Spaces:
Runtime error
Runtime error
import datafit.datafit as df | |
def getResponse(data, model, LabelT, LabelS): | |
print(data.columns) | |
# Transform using the pre-trained LabelEncoder | |
data["Sequence"] = LabelS.transform(data["Sequence"]) | |
# Apply normalization if needed | |
data, _ = df.normalization(data) | |
# Make predictions | |
response = model.predict(data) | |
# Assuming 'response' is a binary prediction (0 or 1) | |
# If it's a probability, you might need to adjust the logic accordingly | |
print("Raw Predictions:") | |
print(response) | |
# If you want to interpret the predictions directly (0 or 1) | |
predicted_labels = response.astype(int) | |
print("Predicted Labels:") | |
print(predicted_labels) | |
# If you want to use inverse_transform for better interpretation | |
# Uncomment the following lines | |
inverse_labels = LabelT.inverse_transform(predicted_labels) | |
print("Inverse Transformed Labels:") | |
print(inverse_labels) | |
return inverse_labels | |