import datafit.datafit as df def getResponse(data, model, LabelT, LabelS): print(data.columns) # Transform using the pre-trained LabelEncoder data["Sequence"] = LabelS.transform(data["Sequence"]) # Apply normalization if needed data, _ = df.normalization(data) # Make predictions response = model.predict(data) # Assuming 'response' is a binary prediction (0 or 1) # If it's a probability, you might need to adjust the logic accordingly print("Raw Predictions:") print(response) # If you want to interpret the predictions directly (0 or 1) predicted_labels = response.astype(int) print("Predicted Labels:") print(predicted_labels) # If you want to use inverse_transform for better interpretation # Uncomment the following lines inverse_labels = LabelT.inverse_transform(predicted_labels) print("Inverse Transformed Labels:") print(inverse_labels) return inverse_labels