import streamlit as st import pandas as pd import joblib import time # importing modules import frontend.instructions as fi fi.displayInstructionSection() import frontend.selectingSeqType as sst seqType = sst.selecType() import frontend.gettingInput as gi sequence = gi.gettingInput() from backend.labelingInput import returnValues from backend import labelingInput from backend import gettingFromModel #giveing data selectingView = st.selectbox("Select View",["Table View","Simple View"]) modelPath = "backend/xgboost_model.joblib" LabelETargetedPath = "backend/LabelETargeted.joblib" LabelESequencePath = "backend/LabelESequence.joblib" # button predict = st.button('Predict') if predict: if sequence == "": st.error('No sequence: Please Provide Sequence First') else: with st.spinner("getting values..."): labelingInput.giveValues(sequence) data = returnValues(len(sequence), sequence) print(data.columns) st.success("Generated...") for key,values in data.items(): st.code(f"{key}: {values[0]}") with st.spinner("Loading model..."): model = joblib.load(modelPath) LabelT = joblib.load(LabelETargetedPath) LabelS = joblib.load(LabelESequencePath) response = gettingFromModel.getResponse(data,model,LabelT,LabelS) st.info(f'Predicted, it is "{response[0].upper()}"') time.sleep(1) st.bar_chart(data)