File size: 10,418 Bytes
cec26ce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
#!/usr/bin/env python3
import utils; from utils import *
import os, sys, lzma, json, pprint, time, subprocess
thinker = os.getenv("thinker", "gemini")
TEMPERATURE = float(os.getenv("temperature", 0.1)) # 0.0 conservative (good for coding and correct syntax)
LLM_HOST = "gemini"
TKNZ_RATIO = 1
GEMINI_MODEL = 'gemini-1.5-pro-002'
FLASH_MODEL = 'gemini-1.5-flash-002'
# https://github.com/google-gemini/cookbook/blob/main/quickstarts/Prompting.ipynb
# https://github.com/google-gemini/cookbook/blob/main/quickstarts/Streaming.ipynb
import google.generativeai as genai # pip install -U -q google-generativeai
llm_log_filename = f"{location__}/data/llm.log"
genai.configure(api_key=os.getenv("GEMINI_FLASH_API_KEY"))
GEMINI_CLIENT = genai.GenerativeModel(GEMINI_MODEL, \
generation_config=genai.GenerationConfig(
max_output_tokens=1024*4,
temperature=TEMPERATURE
))
def chat(prompt, history=[], use_cache=False, stream=False):
if stream: return GEMINI_CLIENT.generate_content(prompt, stream=True)
messages = history + [{"role": "user", "content": prompt}] # fake history
with open(llm_log_filename,"at") as f: f.write(f"\n- - - [ {GEMINI_MODEL} ] - - -\n\nPROMPT:\n{prompt}\n")
try:
res = GEMINI_CLIENT.generate_content(prompt, request_options = { "timeout": 6000 })
with open(llm_log_filename,"at") as f: f.write(f"\nRESPONSE:\n{res}\n"); f.write(f"\nCONTENT:\n{res.text}\n")
messages += [{"role": "assistant", "content": res.text}]
return messages
except Exception as e:
with open(llm_log_filename,"at") as f: f.write(f"\nEXCEPTION:\n{e}\n")
print(f"\nEXCEPTION:\n{e}\n"); raise e
FLASH_CLIENT = genai.GenerativeModel(FLASH_MODEL, \
generation_config=genai.GenerationConfig(
max_output_tokens=1024*8,
temperature=TEMPERATURE
))
# def flash_chat(prompt, history=[], use_cache=False, stream=False):
# res = FLASH_CLIENT.generate_content(prompt)
# return [{"role": "assistant", "content": res.text}]
flash_chat = chat
def who_are_you():
print(f"{RED}{LLM_HOST}{RESET} " * 2)
if thinker == "gemini": # gemini pro
CTXLEN = 1024*64 # gemini thì vô tư, 128k hoặc 1m ctxlen đều OK
thinker_chat = chat
elif thinker in "70b|405b":
cache_filename = f"{location__}/data/thinker.jsonl.xz"
lock_filename = f"{location__}/data/thinker.lock"
log_filename = f"{location__}/data/thinker.log"
## Load thinker_cache
lines = [] if not os.path.exists(cache_filename) else \
[ line for line in lzma.open(cache_filename,"rt") ]
assert len(lines) % 2 == 0
thinker_cache = {}; i = 0
while i < len(lines): # line có \n ở cuối nên [:-1] để bỏ đi
thinker_cache[lines[i][:-1]] = json.loads(lines[i+1])
i += 2
lines = None # Done loading
# https://docs.together.ai/docs/chat-models#hosted-models
model = {
"405b": "meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo 8k 3k 1.2", # $5.00 / 1m tokens(*)
"70b": "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo 128k 4k 1.2", # $0.88 / 1m tokens(*)
}[thinker]
model, CTXLEN, MAX_TOKENS, TKNZ_RATIO = model.strip().split()
LLM_HOST = model
MAX_TOKENS = int(MAX_TOKENS[:-1])*1024
TKNZ_RATIO = float(TKNZ_RATIO)
CTXLEN = int(CTXLEN[:-1])
if CTXLEN > 32: CTXLEN = 32 # max 32k ctxlen
CTXLEN = CTXLEN*1024 - MAX_TOKENS
# print(model, CTXLEN, MAX_TOKENS, TKNZ_RATIO); input(); # DEBUG
from together import Together
together_client = Together(api_key=os.environ.get('TOGETHER_API_KEY'))
###
stops = ["<|eot_id|>","<|eom_id|>","</answer>","</output>"]
def thinker_chat(prompt, history=[], stream=False, use_cache=True, testing=False):
if stream:
with open(log_filename,"at") as f: f.write(f"\n- - - [ {LLM_HOST} ] - - -\n\nPROMPT:\n{prompt}\n")
return together_client.chat.completions.create(
model=model,
messages=[{"role": "user", "content": prompt}],
max_tokens=MAX_TOKENS,
temperature=TEMPERATURE,
top_p=0.7, top_k=50,
repetition_penalty=1.2, stop=stops,
stream=True
)
messages = history + [{"role": "user", "content": prompt}]
messages_jsonl = json.dumps(messages, ensure_ascii=False)
cache_found = (messages_jsonl in thinker_cache)
if use_cache and cache_found:
print(f"{YELLOW}<<< cached content >>>{RESET}")
content = thinker_cache[messages_jsonl]
elif testing:
print(f"{RED}<<< testing content >>>{RESET}")
content = "testing testing"
else:
print(f"{GREEN}<<< fresh content >>>{RESET}")
with open(log_filename,"at") as f: f.write(f"\n- - - [ {LLM_HOST} ] - - -\n\nPROMPT:\n{prompt}\n")
try:
response = Together(api_key=os.environ.get('TOGETHER_API_KEY')).chat.completions.create(
model=model,
messages=messages,
max_tokens=MAX_TOKENS,
temperature=TEMPERATURE,
top_p=0.7, top_k=50,
repetition_penalty=1.2, stop=stops,
logprobs=1, stream=False
)
except Exception as e:
with open(log_filename,"at") as f: f.write(f"\nEXCEPTION:\n{e}\n")
print(f"\nEXCEPTION:\n{e}\n"); raise e
content = response.choices[0].message.content
with open(log_filename,"at") as f:
f.write(f"\nRESPONSE:\n{response}\n")
f.write(f"\nCONTENT:\n{content}\n")
thinker_cache[messages_jsonl] = content # update new generated content
waits = 5
while waits > 0 and os.path.exists(lock_filename): # có người đang write, wait
waits -= 1
time.sleep(0.2)
if waits == 0:
assert False, f"Bị lock hơn 1 second, có thể xóa {lock_filename} nếu lỗi này lặp lại"
subprocess.run(f"touch {lock_filename}", shell=True) # lock
with lzma.open(cache_filename,"at") as f: # write
f.write(f"{messages_jsonl}\n{json.dumps(content, ensure_ascii=False)}\n")
subprocess.run(f"rm {lock_filename}", shell=True) # unlock
messages += [{"role": "assistant", "content": content}]
return messages
elif thinker in "gemma2:27b|commandr:35b|llama3.1:70b":
#################
## Ollama connect
import subprocess, ollama # pip install ollama
try: ollama.list()
except: subprocess.run('nohup ssh -N -L 11434:localhost:11434 -p 22021 [email protected] &', shell=True)
subprocess.run('nohup ssh -N -L 9999:localhost:11434 -p 17340 [email protected] &', shell=True)
#################
OLLAMA_CLIENT = ollama.Client(host='http://localhost:11434')
machine = "RTX-4090-24G"
## ~30b models
if thinker in "gemma2:27b": OLLAMA_MODEL = "gemma2:27b-instruct-q5_K_M" ; CTXLEN = 512*14 # fit 24G
elif thinker in "commandr:35b": OLLAMA_MODEL = "command-r:35b-08-2024-q4_K_M" ; CTXLEN = 512*18 # fit 24G
else: OLLAMA_MODEL = "not found"
try: connect_to_4090 = OLLAMA_MODEL in str(ollama.list())
except: connect_to_4090 = False
if not connect_to_4090: # switch to A100
OLLAMA_CLIENT = ollama.Client(host='http://localhost:9999')
machine = "A100-PCIE-40GB"
## ~30b to ~70b models
if thinker in "gemma2:27b": OLLAMA_MODEL = "gemma2:27b-instruct-q8_0" ; CTXLEN = 1024*24
elif thinker in "commandr:35b": OLLAMA_MODEL = "command-r:35b-08-2024-q8_0" ; CTXLEN = 1024*32
elif thinker in "llama3.1:70b": OLLAMA_MODEL = "llama3.1:70b-instruct-q3_K_M" ; CTXLEN = 1024*12#fit 40G
LLM_HOST = f"{machine}__{OLLAMA_MODEL}"
def thinker_chat(prompt, history=[], stream=False, use_cache=False):
if stream:
with open(llm_log_filename,"at") as f: f.write(f"\n- - - [ {LLM_HOST} ] - - -\n\nPROMPT:\n{prompt}\n")
return OLLAMA_CLIENT.chat(model=OLLAMA_MODEL, messages=[{"role": "user", "content": prompt}], \
stream=True, options={'num_ctx': CTXLEN, 'temperature': TEMPERATURE})
messages = history + [{"role": "user", "content": prompt}]
with open(llm_log_filename,"at") as f: f.write(f"\n- - - [ {LLM_HOST} ] - - -\n\nPROMPT:\n{prompt}\n")
res = OLLAMA_CLIENT.chat(model=OLLAMA_MODEL, messages=messages, options={'temperature': TEMPERATURE})
content = res["message"]["content"]
with open(llm_log_filename,"at") as f: f.write(f"\nCONTENT:\n{content}\n")
messages += [{"role": "assistant", "content": content}]
return messages
## To make it's 100% local llm, normal chat can also use thinker
# chat = thinker_chat
LLM_HOST += f"__{round(CTXLEN/1024)}k_ctxlen"
who_are_you()
from prompts import summary_template
from prompts import contextual_template, clean_view_template
USE_CACHE = os.getenv("cache", "1") == "1"
def extract_keyphrases_figures_summary(text):
if len(text) < 80: return ""
prompt = summary_template.format(text = text)
print(f"{GREEN}{text}{RESET}")
utils.reset_timer(timer = "extract_keyphrases_figures_summary")
res = chat(prompt, use_cache = USE_CACHE)
utils.measure_time("", timer = "extract_keyphrases_figures_summary")
raw = res[-1]["content"]
print(f"{MAGENTA}{raw}{RESET}")
return raw
def gen_contextual(document, chunk):
prompt = contextual_template.format(document = document, chunk = chunk)
res = thinker_chat(prompt, use_cache = USE_CACHE)
contextual = res[-1]["content"].strip()
return contextual
def gen_clean_view(document):
prompt = clean_view_template.format(document = document)
res = chat(prompt, use_cache = USE_CACHE)
ret = res[-1]["content"].strip()
return ret
if __name__ == "__main__":
try: filename = sys.argv[1]
except: filename = None
if filename: q = open(filename, "rt").read()
else: q = "What's your name? Who created you?"
utils.reset_timer(); res = thinker_chat(q, use_cache=False)
utils.measure_time(LLM_HOST + " ")
print(f"{CYAN}{q}{RESET}", end="\n\n"); print(res[-1]["content"])
|