File size: 22,675 Bytes
675b3d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 |
import trafilatura
import requests
import lzma
import os
import re
import time
from datetime import datetime
import json
from pprint import pprint
import subprocess
import config
from utils import *
from text_utils import *
from llm import *
from mode_llm import llm_html_to_md, md_to_text, get_html_body_with_soup
from crawl4ai import WebCrawler # pip install "crawl4ai @ git+https://github.com/unclecode/crawl4ai.git"
# Create an instance of WebCrawler
crawler = WebCrawler()
# Warm up the crawler (load necessary models)
crawler.warmup()
## Cách lấy cookies và headers sử dụng https://curlconverter.com
cookies = {
'ASP.NET_SessionId': '42i3ivvgk14yd2tnxmddybvq',
'Culture': 'vi',
'Cookie_VB': 'close',
'ruirophaply-covi19': '24',
'SLG_G_WPT_TO': 'vi',
'G_ENABLED_IDPS': 'google',
'SLG_GWPT_Show_Hide_tmp': '1',
'SLG_wptGlobTipTmp': '1',
'__zlcmid': '1NOmxyopHgawxjN',
'45C5EF': '96780c17-dee3-49b2-9bf7-6335c4348d4f',
'vqc': '0',
}
headers = {
'accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.7',
'accept-language': 'en-US,en;q=0.9',
'cache-control': 'max-age=0',
'priority': 'u=0, i',
'sec-ch-ua': '"Opera GX";v="111", "Chromium";v="125", "Not.A/Brand";v="24"',
'sec-ch-ua-mobile': '?0',
'sec-ch-ua-platform': '"Windows"',
'sec-fetch-dest': 'document',
'sec-fetch-mode': 'navigate',
'sec-fetch-site': 'none',
'sec-fetch-user': '?1',
'sec-gpc': '1',
'upgrade-insecure-requests': '1',
'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/125.0.0.0 Safari/537.36 OPR/111.0.0.0',
# 'User-Agent': "Mozilla/5.0 (Linux; Android 6.0; Nexus 5 Build/MRA58N) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/113.0.0.0 Mobile Safari/537.36",
}
def norm_url_and_gen_filename(url):
url = url.strip() # loại bỏ ký tự trống ở đầu và cuối
if url[-1] == "/": url = url[:-1] # loại bỏ "/" ở cuối
# init filename và tạo sub folder nếu chưa có
filename = f'.cache/{url}'
return url, filename
def reset_content(url):
_, filename = norm_url_and_gen_filename(url)
text_filename = filename + ".txt"
json_filename = filename + ".json"
html_filename = filename + ".html"
xz_filename = filename + ".xz"
for filename in [
text_filename,
json_filename,
html_filename,
xz_filename,
]:
cmd = f"rm -rf '{filename}'"; print(cmd)
subprocess.run(cmd, shell = True)
# from functools import lru_cache
# @lru_cache(maxsize=128)
def url_content(url, update_text=None):
url, filename = norm_url_and_gen_filename(url)
parts = filename.split("/")
for i in range(1, len(parts)):
path = "/".join(parts[:i])
# print(path) # DEBUG
os.makedirs(path, exist_ok=True)
text_filename = filename + ".txt"
json_filename = filename + ".json"
html_filename = filename + ".html"
xz_filename = filename + ".xz"
# Nếu được yêu cầu update nội dung text của url thì update
if update_text is not None:
print("\nUPDATE TEXT", filename)
text, noise_ratio, max_noise = normalize_text(update_text, get_noise_info = True)
# update meta, Lưu lại text và meta
meta = json.load(open(json_filename))
meta["updated_at"] = str(datetime.now())
meta["updates_count"] += 1
meta["noise_ratio"] = noise_ratio
meta["max_noise"] = max_noise
# Cắt ngắn text nếu đầu vào quá dài
text = cut_if_too_long(text, meta)
with open(json_filename, "wt") as f:
f.write(json.dumps(meta, ensure_ascii = False))
with open(text_filename, "wt") as f:
f.write(text)
# gọi gen_clear_view.py (chạy chậm) ở process riêng
get_clear_view(filename)
# Re-gen llm contents
get_llm_gen_contents(url, use_cache = False)
print(CYAN,end=""); print(meta); print(RESET,end="", flush=True)
# Nếu tồn tại text_filename thì trả về,
# đây có thể là nội dung text đã được chỉnh sửa nên ưu tiên trả về trước
if os.path.exists(text_filename):
print("\nGOT TEXT", filename, flush=True)
norm_text = open(text_filename, "rt").read()
return norm_text
html = None
# Thử đọc nội dung html đã được cache
if os.path.exists(xz_filename):
try:
html = lzma.open(xz_filename,"rt").read()
print("\nGOT HTML", filename, flush=True)
except:
pass
blacklist = """
Your connection is not private
-----BEGIN CERTIFICATE-----
""".strip().split("\n")
## Thử các cách lấy HTML: requests vs crawl4ai vs reader
get_html_method = "requests"
if html is None:
# Thử lần 1 bằng requests
print("\nGET HTML", filename, flush=True)
try:
html = requests.get(url, cookies=cookies, headers=headers)
html = str(html.text)
# Lưu lại nội dung html vào xz_filename
with lzma.open(xz_filename, "wt") as f: f.write(html)
except Exception as e:
print(f"!!! REQUESTS Error {e} !!!")
if isinstance(html, str):
for x in blacklist:
if x in html:
print(f"--{x}--")
i = html.find(x)
print(f"{RED}!!! REQUESTS đọc lỗi {html[i-30:i+200]} !!!{RESET}")
html = None
break
meta = None
if html is None or len(html) < 500:
# Thử lần 2 bằng CRAWL4AI
print("GET HTML CRAWL4AI", filename, flush=True)
get_html_method = "crawl4ai"
try:
result = crawler.run(url=url)
html = result.html
# Lưu lại nội dung html vào xz_filename
with lzma.open(xz_filename, "wt") as f: f.write(html)
# {'title': 'Ngập úng và thiệt hại trên 202.000 ha lúa | baotintuc.vn', 'description': 'Thống kê từ Bộ Nông nghiệp và Phát triển nông thôn, tính đến sáng 13/9, có trên 202.000 ha lúa, gần 39.300 ha hoa màu bị ngập úng, thiệt hại do ảnh hưởng của bão số 3.', 'keywords': None, 'author': 'baotintuc.vn', 'og:type': 'article', 'og:url': 'https://baotintuc.vn/xa-hoi/ngap-ung-va-thiet-hai-tren-202000-ha-lua-20240913095621343.htm', 'og:image': 'https://cdnmedia.baotintuc.vn/Upload/EqV5H9rWgvy9oNikwkHLXA/files/13092024-bao-1.jpg', 'og:image:url': 'https://cdnmedia.baotintuc.vn/Upload/EqV5H9rWgvy9oNikwkHLXA/files/13092024-bao-1.jpg', 'og:image:secure_url': 'https://cdnmedia.baotintuc.vn/Upload/EqV5H9rWgvy9oNikwkHLXA/files/13092024-bao-1.jpg', 'og:image:width': '460', 'og:image:height': '345', 'og:title': 'Ngập úng và thiệt hại trên 202.000 ha lúa', 'og:description': 'Thống kê từ Bộ Nông nghiệp và Phát triển nông thôn, đến sáng 13/9, có trên 202.000 ha lúa, gần 39.300 ha hoa màu bị ngập úng, thiệt hại do ảnh hưởng của bão số 3.', 'twitter: card': 'summary_large_image', 'twitter: image': 'https://cdnmedia.baotintuc.vn/Upload/EqV5H9rWgvy9oNikwkHLXA/files/13092024-bao-1.jpg'}
meta = dict(result.metadata)
for key in result.metadata.keys():
if "og:" in key or "twitter:" in key:
meta.pop(key)
except Exception as e:
print(f"!!! CRAWL4AI Error {e} !!!")
if isinstance(html, str):
for x in blacklist:
if x in html:
i = html.find(x)
print(f"{RED}!!! CRAWL4AI đọc lỗi {html[i-30:i+200]} !!!{RESET}")
html = None
meta = {}
break
if html is None or len(html) < 500:
# Thử lần 3 bằng reader api
print("GET HTML READER", filename, flush=True)
get_html_method = "reader"
try:
reader_url = "https://r.jina.ai/" + url
# Use below header make https://jina.ai/reader return text not markdown by default
html = requests.get(reader_url, headers = { 'X-Return-Format': 'html', }).text
# Lưu lại nội dung html vào xz_filename
with lzma.open(xz_filename, "wt") as f: f.write(html)
except Exception as e:
print(f"!!! READER Error {e} !!!")
if isinstance(html, str):
for x in blacklist:
if x in html:
i = html.find(x)
print(f"{RED}!!! READER đọc lỗi {html[i-30:i+200]} !!!{RESET}")
html = None
break
## Thử các cách extract text: trafilatura vs llm vs reader
extract_method = "trafilatura"
# https://trafilatura.readthedocs.io/en/latest/corefunctions.html#extract
try:
text = trafilatura.extract(html,
# favor_recall = True,
include_tables = True,
include_comments = False,
with_metadata = False,
)
except:
text = ""
if meta is None: # Có thể meta đã đc lấy ở crawl4ai
try:
meta = trafilatura.extract(html, only_with_metadata = True)
if meta and len(meta) > 0:
# print(meta); input() # DEBUG
meta = meta.split("---")[1]
splits = re.findall(r'\S+: [^\n]+', meta)
meta = { x.split(": ", 1)[0].strip() : x.split(": ", 1)[1].strip() for x in splits }
else:
meta = {}
except:
meta = {}
# Chuẩn hóa text
if text is None: text = ""
text, noise_ratio, max_noise = normalize_text(text, get_noise_info = True)
print(f">>> {RED}noise_ratio {pretty_num(noise_ratio)}, max_noise {max_noise}{RESET}")
MEANINGFUL = 500
MAX_NOISE_RATIO = 0.3
too_short = ( len(text) < MEANINGFUL )
too_noise = ( noise_ratio > MAX_NOISE_RATIO or max_noise > MEANINGFUL )
# ko lấy đc text hoặc text quá ngắn (cào trượt), hoặc text quá noise
if text is None or too_short or too_noise:
# Lấy text thông qua phương pháp khác
print("!!! Đoạn text dưới do trafilatura triết xuất có vấn đề?")
print("too short", too_short)
print("too noise", too_noise)
print("- - - "*6)
print(f"{YELLOW}{text}{RESET}")
print("- - - "*6)
print("!!! Dùng Jina Reader ...")
reader_url = "https://r.jina.ai/" + url
# Use below header make https://jina.ai/reader return text not markdown by default
reader_text = requests.get(reader_url, headers = { 'X-Return-Format': 'text', }).text
reader_text, reader_noise_ratio, reader_max_noise = normalize_text(reader_text, get_noise_info = True)
# Chuẩn hóa text
reader_text, reader_noise_ratio, reader_max_noise = normalize_text(reader_text, get_noise_info = True)
reader_too_noise = ( reader_noise_ratio > MAX_NOISE_RATIO or reader_max_noise > MEANINGFUL )
print(f">>> {RED}reader_noise_ratio {pretty_num(reader_noise_ratio)}, reader_max_noise {reader_max_noise}{RESET}")
print(f">>> {RED}reader_too_noise {reader_too_noise}{RESET}")
signal = int( len(text) * (1 - noise_ratio) ) + 1
reader_signal = int( len(reader_text) * (1 - reader_noise_ratio) ) + 1
samesame = ( abs(signal - reader_signal) / reader_signal ) < 0.2
print(f">>> {RED}samesame {samesame}, original signal {pretty_num(signal)}, reader_signal {pretty_num(reader_signal)}{RESET}")
# Nếu bản gốc quá ngắn nhưng bản reader quá noise thì thà chọn ngắn còn hơn
original_too_shot_but_reader_too_noise = (
too_short and (samesame or reader_noise_ratio >= 0.5 )
)
original_too_noise_but_reader_even_more_noise = (
too_noise and noise_ratio < reader_noise_ratio and max_noise < reader_max_noise
)
if original_too_shot_but_reader_too_noise:
print("!!! reader quá noise, chọn bản trafilatura too_short còn hơn.")
if original_too_noise_but_reader_even_more_noise:
print("!!! reader còn noise hơn bản trafilatura, bỏ qua.")
if not original_too_shot_but_reader_too_noise and \
not original_too_noise_but_reader_even_more_noise:
choose_original_text = False
if reader_too_noise: # vẫn còn noisy lắm, thử dùng readability.js
if html is not None and len(html) > 200:
html_filename = filename + ".html"
with open(html_filename, "wt") as f:
f.write(html)
abi_text = subprocess.run(
f"node node_readability.js '{html_filename}' '{url}'",
shell=True,
capture_output=True,
).stdout.decode('utf-8')
abi_text, abi_noise_ratio, abi_max_noise = \
normalize_text(abi_text, get_noise_info = True)
if abi_max_noise < reader_max_noise:
print(GREEN, ">>>", abi_text, "<<<", RESET)
if len(abi_text) < len(reader_text) and len(text) < len(reader_text): # chuộng text ngắn
choose_original_text = True
if not choose_original_text:
extract_method = "reader"
text = reader_text
noise_ratio = reader_noise_ratio
max_noise = reader_max_noise
# update meta, Lưu lại text và meta
meta["url"] = url
meta["get_html_method"] = get_html_method
meta["extract_method"] = extract_method
meta["created_at"] = str(datetime.now())
meta["updates_count"] = 0
meta["noise_ratio"] = noise_ratio
meta["max_noise"] = max_noise
meta["text_origin_len"] = len(text)
if "hostname" in meta: meta.pop("hostname")
if "sitename" in meta: meta.pop("sitename")
# Thêm title và description vào text (nếu có)
norm_text = normalize_text(text)
text = add_title_desc_to_text(norm_text, meta)
# Cắt ngắn text nếu đầu vào quá dài
text = cut_if_too_long(text, meta)
print(CYAN,end=""); print(meta); print(RESET,end="")
with open(json_filename, "wt") as f:
f.write(json.dumps(meta, ensure_ascii = False))
with open(text_filename, "wt") as f:
f.write(text)
get_clear_view(filename)
get_llm_gen_contents(url, use_cache = False)
return text
def get_clear_view(filename):
# gọi gen_clear_view.py (chạy chậm) ở process riêng
subprocess.run(f"nohup python3 gen_clear_view.py '{filename}' &", shell = True)
import time; time.sleep(1) # chờ 1 giây
def cut_if_too_long(text, meta, max_words = config.text_max_words):
words = text.split()
if len(words) > max_words:
words = words[ : max_words]
threshold = len(" ".join(words))
meta["text_cutoff"] = True
meta["text_cutoff_len"] = threshold
return text[ : threshold ]
else:
return text
def add_title_desc_to_text(text, meta):
content = []
title = meta["title"] if "title" in meta else None
description = meta["description"] if "description" in meta else None
if title is not None and len(title) > 5:
content.append(f"**title**: {title}")
if description is not None and len(description) > 10:
content.append(f"**description**: {description}")
content.append(text)
return "\n\n".join(content)
def normalize_text(text, get_noise_info = False):
text = text.strip()
chunks = re.split(r'\s*(?:\n\s*)+', text, flags = re.MULTILINE)
text = "\n\n".join([ x for x in chunks if len(x) > 20 ])
if get_noise_info:
noise_len = 1
total_len = 1
max_noise = 0
continuous_noise = 0
for x in chunks:
n = len(x)
total_len += n
if n < 80:
noise_len += n
continuous_noise += n
if continuous_noise > max_noise:
max_noise = continuous_noise
else:
continuous_noise = 0
noise_ratio = noise_len / total_len
return text, noise_ratio, max_noise
else:
return text
def get_clean_view(url):
url, filename = norm_url_and_gen_filename(url)
clean_view_filename = filename + "__clean_view.txt"
if os.path.exists(clean_view_filename):
return open(clean_view_filename, "rt").read()
else:
return None
def get_meta(url):
url, filename = norm_url_and_gen_filename(url)
json_filename = filename + ".json"
return json.load(open(json_filename))
TAGS = "keyphrases figures summary".split()
###
def get_llm_gen_contents(url, use_cache = True):
url, filename = norm_url_and_gen_filename(url)
json_filename = filename + ".json"
text_filename = filename + ".txt"
if os.path.exists(json_filename):
meta = json.load(open(json_filename, "rt"))
generated = ( "llm_generated" in meta )
if not use_cache or not generated:
text = open(text_filename, "rt").read()
marked_text, chunks = add_chunk_markers(text, para = True)
raw = extract_keyphrases_figures_summary(marked_text)
result = extract_xmls(raw, TAGS)
result["raw"] = raw
meta["llm_generated"] = result
with open(json_filename, "wt") as f:
f.write(json.dumps(meta, ensure_ascii = False))
return meta["llm_generated"]
else:
return {
"summary": "Tóm tắt nội dung ... văn bản nói về ...",
"keyphrases": ["keywords 1", "keywords 2", "keywords 3"]
}
default_urls_input = """
https://thuvienphapluat.vn/phap-luat/ho-so-dien-tu-thuc-hien-thu-tuc-hanh-chinh-la-gi-huong-dan-chuan-bi-va-nop-ho-so-dien-tu-khi-thuc-h-155754-140107.html
https://video.vnexpress.net/bon-ngay-chong-choi-lu-ngap-gan-3-m-cua-nguoi-dan-thai-nguyen-4791440.html
http://danvan.vn/Home/Tin-hoat-dong/Ban-dan-van/18706/Ban-Dan-van-Trung-uong-va-Hoi-Chu-thap-do-Viet-Nam-tham-tang-qua-nhan-dan-bi-anh-huong-bao-so-3-tai-Thai-Nguyen
https://baodauthau.vn/thai-nguyen-144-ty-dong-nang-cap-duong-cach-mang-thang-8-tp-song-cong-post164486.html
https://baothainguyen.vn/chinh-tri/202409/chu-tich-quoc-hoi-tran-thanh-man-lam-viec-voi-tinh-thai-nguyen-ve-cong-tackhac-phuc-hau-qua-bao-so-3-3f9253f/
https://baothainguyen.vn/giao-duc/202409/dam-bao-dieu-kien-de-hoc-sinh-tro-lai-truong-cham-nhat-ngay-16-9-9742985/
https://baothainguyen.vn/tai-nguyen-moi-truong/202409/khu-khuan-dien-rong-nhung-vung-bi-ngap-lut-tai-tp-thai-nguyen-585273d/
https://baothainguyen.vn/thoi-su-thai-nguyen/202409/dien-luc-tp-thai-nguyen-no-luccap-dien-tro-lai-cho-tren-2000-hotrong-ngay-12-9-da21a20/
https://baothainguyen.vn/xa-hoi/202409/tao-sinh-ke-giam-ngheo-vung-dong-bao-dan-toc-thieu-so-b8f041c/
https://baotintuc.vn/xa-hoi/ngap-ung-va-thiet-hai-tren-202000-ha-lua-20240913095621343.htm
https://daidoanket.vn/thai-nguyen-hai-nguoi-tu-vong-thiet-hai-hon-600-ty-dong-do-bao-yagi-10290104.html
https://dangcongsan.vn/xay-dung-dang/thai-nguyen-cong-bo-cac-quyet-dinh-ve-cong-tac-can-bo-677747.html
https://danviet.vn/62-y-bac-si-cua-binh-dinh-den-thai-nguyen-yen-bai-quyet-tam-cung-dong-bao-vuot-qua-kho-khan-20240913101402511.htm
https://laodong.vn/thoi-su/chu-tich-quoc-hoi-kiem-tra-cong-tac-khac-phuc-hau-qua-mua-lu-o-thai-nguyen-1393445.ldo
https://nhandan.vn/anh-chu-tich-quoc-hoi-tran-thanh-man-kiem-tra-cong-tac-khac-phuc-hau-qua-bao-so-3-tai-tinh-thai-nguyen-post830447.html
https://nld.com.vn/toi-7-gio-13-9-336-nguoi-chet-va-mat-tich-hon-130-ngan-nguoi-dan-phai-di-doi-do-bao-lu-196240913101124546.htm
https://phunuvietnam.vn/thai-nguyen-hoi-vien-phu-nu-chung-tay-khac-phuc-hau-qua-ngap-lut-20240912154801867.htm
https://phunuvietnam.vn/thai-nguyen-trien-khai-cong-tac-phong-chong-dich-sau-thien-tai-20240912174641866.htm
https://thainguyen.dcs.vn/hoat-dong-cua-cac-dang-bo/dang-bo-tp-thai-nguyen/hoi-nghi-ban-thuong-vu-thanh-uy-thai-nguyen-lan-thu-102-857.html
https://thainguyen.dms.gov.vn/tin-chi-tiet/-/chi-tiet/thai-nguyen-%C4%91am-bao-nguon-hang-hoa-phuc-vu-nhan-dan-89820-1404.html
https://thuonghieucongluan.com.vn/thai-nguyen-tiep-nhan-5-tan-gao-ho-tro-nhan-dan-bi-anh-huong-ngap-lut-a235642.html
https://tienphong.vn/nam-thanh-nien-o-thai-nguyen-bi-lu-cuon-khi-di-bat-ca-post1672693.tpo
https://tienphong.vn/ngan-hang-dau-tien-cong-bo-giam-lai-suat-cho-vay-sau-bao-so-3-post1672728.tpo
https://tuoitre.vn/chu-tich-quoc-hoi-tran-thanh-man-trao-30-ti-dong-ho-tro-khac-phuc-bao-lu-tai-thai-nguyen-20240912191724375.htm
https://tuoitre.vn/sau-lu-nguoi-dan-thai-nguyen-noi-chua-bao-gio-bun-ngap-nhieu-den-vay-202409121653144.htm
https://vietnamnet.vn/muc-nuoc-song-cau-o-thai-nguyen-giam-dan-nguoi-dan-tat-bat-don-dep-sau-lu-2321461.html
https://vtcnews.vn/trieu-nu-cuoi-huong-ve-thai-nguyen-sau-con-bao-ar895714.html
""".strip()
default_urls_input = """
https://vnexpress.net/sam-altman-ai-thong-minh-hon-con-nguoi-trong-vai-nghin-ngay-toi-4796649.html
https://vnexpress.net/may-tram-chay-ai-gia-tram-trieu-dong-tai-viet-nam-4796490.html
https://www.vngcloud.vn/blog/what-are-large-language-models
https://arxiv.org/html/2408.16737v1
https://arxiv.org/html/2409.15700v1
https://arxiv.org/html/2409.09916v1
https://arxiv.org/html/2409.06903v1
https://arxiv.org/html/2409.12558v1
https://arxiv.org/html/2409.10516v2
https://rlhflow.github.io/posts/2024-05-29-multi-objective-reward-modeling
https://arxiv.org/html/2405.07863v2
https://arxiv.org/html/2406.12845
""".strip()
|