tomtat / notebook_helpers.py
tiendung's picture
docchat
244703e
import trafilatura
import requests
import lzma
import os
import re
import time
from datetime import datetime
import json
from pprint import pprint
import subprocess
import config
from utils import *
from text_utils import *
from llm import *
## Cách lấy cookies và headers sử dụng https://curlconverter.com
cookies = {
'ASP.NET_SessionId': '42i3ivvgk14yd2tnxmddybvq',
'Culture': 'vi',
'Cookie_VB': 'close',
'ruirophaply-covi19': '24',
'SLG_G_WPT_TO': 'vi',
'G_ENABLED_IDPS': 'google',
'SLG_GWPT_Show_Hide_tmp': '1',
'SLG_wptGlobTipTmp': '1',
'__zlcmid': '1NOmxyopHgawxjN',
'45C5EF': '96780c17-dee3-49b2-9bf7-6335c4348d4f',
'vqc': '0',
}
headers = {
'accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.7',
'accept-language': 'en-US,en;q=0.9',
'cache-control': 'max-age=0',
'priority': 'u=0, i',
'sec-ch-ua': '"Opera GX";v="111", "Chromium";v="125", "Not.A/Brand";v="24"',
'sec-ch-ua-mobile': '?0',
'sec-ch-ua-platform': '"Windows"',
'sec-fetch-dest': 'document',
'sec-fetch-mode': 'navigate',
'sec-fetch-site': 'none',
'sec-fetch-user': '?1',
'sec-gpc': '1',
'upgrade-insecure-requests': '1',
'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/125.0.0.0 Safari/537.36 OPR/111.0.0.0',
# 'User-Agent': "Mozilla/5.0 (Linux; Android 6.0; Nexus 5 Build/MRA58N) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/113.0.0.0 Mobile Safari/537.36",
}
def get_url_content(url):
_, filename = norm_url_and_gen_filename(url)
text = open(filename + ".txt", "rt").read()
meta = get_meta(url)
summ = meta["llm_generated"]["summary"]
summ = re.sub(r'<cite>.*?</cite>', '', summ, flags = re.IGNORECASE | re.MULTILINE)
return f"""<document url="{url}">
<summary>{summ}</summary>
{text}
</document>
"""
def docchat(urls_input, prompt):
urls = get_urls(urls_input)
documents = "\n".join([ get_url_content(x) for x in urls ])
return query_documents(documents, prompt)
def get_urls(urls_input):
return urls_input.strip().split()
def got_all_urls(urls_input):
urls = get_urls(urls_input)
for x in urls:
_, filename = norm_url_and_gen_filename(x)
if not os.path.exists(filename + ".txt"):
return False
return True
def norm_url_and_gen_filename(url):
url = url.strip() # loại bỏ ký tự trống ở đầu và cuối
if url[-1] == "/": url = url[:-1] # loại bỏ "/" ở cuối
# init filename và tạo sub folder nếu chưa có
filename = f'.cache/{url}'
return url, filename
def reset_content(url):
_, filename = norm_url_and_gen_filename(url)
text_filename = filename + ".txt"
json_filename = filename + ".json"
html_filename = filename + ".html"
xz_filename = filename + ".xz"
for filename in [
text_filename,
json_filename,
html_filename,
xz_filename,
]:
cmd = f"rm -rf '{filename}'"; print(cmd)
subprocess.run(cmd, shell = True)
# from functools import lru_cache
# @lru_cache(maxsize=128)
def url_content(url, update_text=None):
url, filename = norm_url_and_gen_filename(url)
parts = filename.split("/")
for i in range(1, len(parts)):
path = "/".join(parts[:i])
# print(path) # DEBUG
os.makedirs(path, exist_ok=True)
text_filename = filename + ".txt"
json_filename = filename + ".json"
html_filename = filename + ".html"
xz_filename = filename + ".xz"
# Nếu được yêu cầu update nội dung text của url thì update
if update_text is not None:
print("\nUPDATE TEXT", filename)
text, noise_ratio, max_noise = normalize_text(update_text, get_noise_info = True)
# update meta, Lưu lại text và meta
meta = json.load(open(json_filename))
meta["updated_at"] = str(datetime.now())
meta["updates_count"] += 1
meta["noise_ratio"] = noise_ratio
meta["max_noise"] = max_noise
# Cắt ngắn text nếu đầu vào quá dài
text = cut_if_too_long(text, meta)
with open(json_filename, "wt") as f:
f.write(json.dumps(meta, ensure_ascii = False))
with open(text_filename, "wt") as f:
f.write(text)
# gọi gen_clear_view.py (chạy chậm) ở process riêng
get_clear_view(filename)
# Re-gen llm contents
get_llm_gen_contents(url, use_cache = False)
print(CYAN,end=""); print(meta); print(RESET,end="", flush=True)
# Nếu tồn tại text_filename thì trả về,
# đây có thể là nội dung text đã được chỉnh sửa nên ưu tiên trả về trước
if os.path.exists(text_filename):
print("\nGOT TEXT", filename, flush=True)
norm_text = open(text_filename, "rt").read()
return norm_text
html = None
# Thử đọc nội dung html đã được cache
if os.path.exists(xz_filename):
try:
html = lzma.open(xz_filename,"rt").read()
print("\nGOT HTML", filename, flush=True)
except:
pass
blacklist = """
Your connection is not private
-----BEGIN CERTIFICATE-----
""".strip().split("\n")
## Thử các cách lấy HTML: requests vs crawl4ai vs reader
get_html_method = "requests"
if html is None:
# Thử lần 1 bằng requests
print("\nGET HTML", filename, flush=True)
try:
html = requests.get(url, cookies=cookies, headers=headers)
html = str(html.text)
# Lưu lại nội dung html vào xz_filename
with lzma.open(xz_filename, "wt") as f: f.write(html)
except Exception as e:
print(f"!!! REQUESTS Error {e} !!!")
if isinstance(html, str):
for x in blacklist:
if x in html:
print(f"--{x}--")
i = html.find(x)
print(f"{RED}!!! REQUESTS đọc lỗi {html[i-30:i+200]} !!!{RESET}")
html = None
break
meta = None
# Lấy meta / html bằng phương pháp khác ...
# Tạm bỏ crawl4ai vì không cài được lên HF
if html is None or len(html) < 500:
# Thử lần 3 bằng reader api
print("GET HTML READER", filename, flush=True)
get_html_method = "reader"
try:
reader_url = "https://r.jina.ai/" + url
# Use below header make https://jina.ai/reader return text not markdown by default
html = requests.get(reader_url, headers = { 'X-Return-Format': 'html', }).text
# Lưu lại nội dung html vào xz_filename
with lzma.open(xz_filename, "wt") as f: f.write(html)
except Exception as e:
print(f"!!! READER Error {e} !!!")
if isinstance(html, str):
for x in blacklist:
if x in html:
i = html.find(x)
print(f"{RED}!!! READER đọc lỗi {html[i-30:i+200]} !!!{RESET}")
html = None
break
## Thử các cách extract text: trafilatura vs llm vs reader
extract_method = "trafilatura"
# https://trafilatura.readthedocs.io/en/latest/corefunctions.html#extract
try:
text = trafilatura.extract(html,
# favor_recall = True,
include_tables = True,
include_comments = False,
with_metadata = False,
)
except:
text = ""
if meta is None: # Có thể meta đã đc lấy ở crawl4ai
try:
meta = trafilatura.extract(html, only_with_metadata = True)
if meta and len(meta) > 0:
# print(meta); input() # DEBUG
meta = meta.split("---")[1]
splits = re.findall(r'\S+: [^\n]+', meta)
meta = { x.split(": ", 1)[0].strip() : x.split(": ", 1)[1].strip() for x in splits }
else:
meta = {}
except:
meta = {}
# Chuẩn hóa text
if text is None: text = ""
text, noise_ratio, max_noise = normalize_text(text, get_noise_info = True)
print(f">>> {RED}noise_ratio {pretty_num(noise_ratio)}, max_noise {max_noise}{RESET}")
MEANINGFUL = 500
MAX_NOISE_RATIO = 0.3
too_short = ( len(text) < MEANINGFUL )
too_noise = ( noise_ratio > MAX_NOISE_RATIO or max_noise > MEANINGFUL )
# ko lấy đc text hoặc text quá ngắn (cào trượt), hoặc text quá noise
if text is None or too_short or too_noise:
# Lấy text thông qua phương pháp khác
print("!!! Đoạn text dưới do trafilatura triết xuất có vấn đề?")
print("too short", too_short)
print("too noise", too_noise)
print("- - - "*6)
print(f"{YELLOW}{text}{RESET}")
print("- - - "*6)
print("!!! Dùng Jina Reader ...")
reader_url = "https://r.jina.ai/" + url
# Use below header make https://jina.ai/reader return text not markdown by default
reader_text = requests.get(reader_url, headers = { 'X-Return-Format': 'text', }).text
reader_text, reader_noise_ratio, reader_max_noise = normalize_text(reader_text, get_noise_info = True)
# Chuẩn hóa text
reader_text, reader_noise_ratio, reader_max_noise = normalize_text(reader_text, get_noise_info = True)
reader_too_noise = ( reader_noise_ratio > MAX_NOISE_RATIO or reader_max_noise > MEANINGFUL )
print(f">>> {RED}reader_noise_ratio {pretty_num(reader_noise_ratio)}, reader_max_noise {reader_max_noise}{RESET}")
print(f">>> {RED}reader_too_noise {reader_too_noise}{RESET}")
signal = int( len(text) * (1 - noise_ratio) ) + 1
reader_signal = int( len(reader_text) * (1 - reader_noise_ratio) ) + 1
samesame = ( abs(signal - reader_signal) / reader_signal ) < 0.2
print(f">>> {RED}samesame {samesame}, original_signal {pretty_num(signal)}, \
reader_signal {pretty_num(reader_signal)}{RESET}")
# Nếu bản gốc quá ngắn nhưng bản reader quá noise thì thà chọn ngắn còn hơn
original_too_shot_but_reader_too_noise = (
too_short and (samesame or reader_noise_ratio >= 0.5 )
)
original_too_noise_but_reader_even_more_noise = (
too_noise and noise_ratio < reader_noise_ratio and max_noise < reader_max_noise
)
if original_too_shot_but_reader_too_noise:
print("!!! reader quá noise, chọn bản trafilatura too_short còn hơn.")
if original_too_noise_but_reader_even_more_noise:
print("!!! reader còn noise hơn bản trafilatura, bỏ qua.")
if not original_too_shot_but_reader_too_noise and \
not original_too_noise_but_reader_even_more_noise:
extract_method = "reader"
text = reader_text
noise_ratio = reader_noise_ratio
max_noise = reader_max_noise
# update meta, Lưu lại text và meta
meta["url"] = url
meta["get_html_method"] = get_html_method
meta["extract_method"] = extract_method
meta["created_at"] = str(datetime.now())
meta["updates_count"] = 0
meta["noise_ratio"] = noise_ratio
meta["max_noise"] = max_noise
meta["text_origin_len"] = len(text)
if "hostname" in meta: meta.pop("hostname")
if "sitename" in meta: meta.pop("sitename")
# Thêm title và description vào text (nếu có)
norm_text = normalize_text(text)
text = add_title_desc_to_text(norm_text, meta)
# Cắt ngắn text nếu đầu vào quá dài
text = cut_if_too_long(text, meta)
print(CYAN,end=""); print(meta); print(RESET,end="")
with open(json_filename, "wt") as f:
f.write(json.dumps(meta, ensure_ascii = False))
with open(text_filename, "wt") as f:
f.write(text)
get_clear_view(filename)
get_llm_gen_contents(url, use_cache = False)
return text
def get_clear_view(filename):
# gọi gen_clear_view.py (chạy chậm) ở process riêng
subprocess.run(f"nohup python3 gen_clear_view.py '{filename}' &", shell = True)
import time; time.sleep(1) # chờ 1 giây
def cut_if_too_long(text, meta, max_words = config.text_max_words):
words = text.split()
if len(words) > max_words:
words = words[ : max_words]
threshold = len(" ".join(words))
meta["text_cutoff"] = True
meta["text_cutoff_len"] = threshold
return text[ : threshold ]
else:
return text
def add_title_desc_to_text(text, meta):
content = []
title = meta["title"] if "title" in meta else None
description = meta["description"] if "description" in meta else None
if title is not None and len(title) > 5:
content.append(f"**title**: {title}")
if description is not None and len(description) > 10:
content.append(f"**description**: {description}")
content.append(text)
return "\n\n".join(content)
def normalize_text(text, get_noise_info = False):
text = text.strip()
chunks = re.split(r'\s*(?:\n\s*)+', text, flags = re.MULTILINE)
text = "\n\n".join([ x for x in chunks if len(x) > 20 ])
if get_noise_info:
noise_len = 1
total_len = 1
max_noise = 0
continuous_noise = 0
for x in chunks:
n = len(x)
total_len += n
if n < 80:
noise_len += n
continuous_noise += n
if continuous_noise > max_noise:
max_noise = continuous_noise
else:
continuous_noise = 0
noise_ratio = noise_len / total_len
return text, noise_ratio, max_noise
else:
return text
def get_clean_view(url):
url, filename = norm_url_and_gen_filename(url)
clean_view_filename = filename + "__clean_view.txt"
if os.path.exists(clean_view_filename):
return open(clean_view_filename, "rt").read()
else:
return None
def get_meta(url):
url, filename = norm_url_and_gen_filename(url)
json_filename = filename + ".json"
return json.load(open(json_filename))
TAGS = "keyphrases figures summary".split()
###
def get_llm_gen_contents(url, use_cache = True):
url, filename = norm_url_and_gen_filename(url)
json_filename = filename + ".json"
text_filename = filename + ".txt"
if os.path.exists(json_filename):
meta = json.load(open(json_filename, "rt"))
generated = ( "llm_generated" in meta )
if not use_cache or not generated:
text = open(text_filename, "rt").read()
marked_text, chunks = add_chunk_markers(text, para = True)
raw = extract_keyphrases_figures_summary(marked_text)
result = extract_xmls(raw, TAGS)
result["raw"] = raw
meta["llm_generated"] = result
with open(json_filename, "wt") as f:
f.write(json.dumps(meta, ensure_ascii = False))
return meta["llm_generated"]
else:
return {
"summary": "Tóm tắt nội dung ... văn bản nói về ...",
"keyphrases": ["keywords 1", "keywords 2", "keywords 3"]
}
default_urls_input = """
https://thuvienphapluat.vn/phap-luat/ho-so-dien-tu-thuc-hien-thu-tuc-hanh-chinh-la-gi-huong-dan-chuan-bi-va-nop-ho-so-dien-tu-khi-thuc-h-155754-140107.html
https://video.vnexpress.net/bon-ngay-chong-choi-lu-ngap-gan-3-m-cua-nguoi-dan-thai-nguyen-4791440.html
http://danvan.vn/Home/Tin-hoat-dong/Ban-dan-van/18706/Ban-Dan-van-Trung-uong-va-Hoi-Chu-thap-do-Viet-Nam-tham-tang-qua-nhan-dan-bi-anh-huong-bao-so-3-tai-Thai-Nguyen
https://baodauthau.vn/thai-nguyen-144-ty-dong-nang-cap-duong-cach-mang-thang-8-tp-song-cong-post164486.html
https://baothainguyen.vn/chinh-tri/202409/chu-tich-quoc-hoi-tran-thanh-man-lam-viec-voi-tinh-thai-nguyen-ve-cong-tackhac-phuc-hau-qua-bao-so-3-3f9253f/
https://baothainguyen.vn/giao-duc/202409/dam-bao-dieu-kien-de-hoc-sinh-tro-lai-truong-cham-nhat-ngay-16-9-9742985/
https://baothainguyen.vn/tai-nguyen-moi-truong/202409/khu-khuan-dien-rong-nhung-vung-bi-ngap-lut-tai-tp-thai-nguyen-585273d/
https://baothainguyen.vn/thoi-su-thai-nguyen/202409/dien-luc-tp-thai-nguyen-no-luccap-dien-tro-lai-cho-tren-2000-hotrong-ngay-12-9-da21a20/
https://baothainguyen.vn/xa-hoi/202409/tao-sinh-ke-giam-ngheo-vung-dong-bao-dan-toc-thieu-so-b8f041c/
https://baotintuc.vn/xa-hoi/ngap-ung-va-thiet-hai-tren-202000-ha-lua-20240913095621343.htm
https://daidoanket.vn/thai-nguyen-hai-nguoi-tu-vong-thiet-hai-hon-600-ty-dong-do-bao-yagi-10290104.html
https://dangcongsan.vn/xay-dung-dang/thai-nguyen-cong-bo-cac-quyet-dinh-ve-cong-tac-can-bo-677747.html
https://danviet.vn/62-y-bac-si-cua-binh-dinh-den-thai-nguyen-yen-bai-quyet-tam-cung-dong-bao-vuot-qua-kho-khan-20240913101402511.htm
https://laodong.vn/thoi-su/chu-tich-quoc-hoi-kiem-tra-cong-tac-khac-phuc-hau-qua-mua-lu-o-thai-nguyen-1393445.ldo
https://nhandan.vn/anh-chu-tich-quoc-hoi-tran-thanh-man-kiem-tra-cong-tac-khac-phuc-hau-qua-bao-so-3-tai-tinh-thai-nguyen-post830447.html
https://nld.com.vn/toi-7-gio-13-9-336-nguoi-chet-va-mat-tich-hon-130-ngan-nguoi-dan-phai-di-doi-do-bao-lu-196240913101124546.htm
https://phunuvietnam.vn/thai-nguyen-hoi-vien-phu-nu-chung-tay-khac-phuc-hau-qua-ngap-lut-20240912154801867.htm
https://phunuvietnam.vn/thai-nguyen-trien-khai-cong-tac-phong-chong-dich-sau-thien-tai-20240912174641866.htm
https://thainguyen.dcs.vn/hoat-dong-cua-cac-dang-bo/dang-bo-tp-thai-nguyen/hoi-nghi-ban-thuong-vu-thanh-uy-thai-nguyen-lan-thu-102-857.html
https://thainguyen.dms.gov.vn/tin-chi-tiet/-/chi-tiet/thai-nguyen-%C4%91am-bao-nguon-hang-hoa-phuc-vu-nhan-dan-89820-1404.html
https://thuonghieucongluan.com.vn/thai-nguyen-tiep-nhan-5-tan-gao-ho-tro-nhan-dan-bi-anh-huong-ngap-lut-a235642.html
https://tienphong.vn/nam-thanh-nien-o-thai-nguyen-bi-lu-cuon-khi-di-bat-ca-post1672693.tpo
https://tienphong.vn/ngan-hang-dau-tien-cong-bo-giam-lai-suat-cho-vay-sau-bao-so-3-post1672728.tpo
https://tuoitre.vn/chu-tich-quoc-hoi-tran-thanh-man-trao-30-ti-dong-ho-tro-khac-phuc-bao-lu-tai-thai-nguyen-20240912191724375.htm
https://tuoitre.vn/sau-lu-nguoi-dan-thai-nguyen-noi-chua-bao-gio-bun-ngap-nhieu-den-vay-202409121653144.htm
https://vietnamnet.vn/muc-nuoc-song-cau-o-thai-nguyen-giam-dan-nguoi-dan-tat-bat-don-dep-sau-lu-2321461.html
https://vtcnews.vn/trieu-nu-cuoi-huong-ve-thai-nguyen-sau-con-bao-ar895714.html
""".strip()
if os.getenv("test", 0) == "1":
default_urls_input = """
https://vnexpress.net/sam-altman-ai-thong-minh-hon-con-nguoi-trong-vai-nghin-ngay-toi-4796649.html
https://vnexpress.net/may-tram-chay-ai-gia-tram-trieu-dong-tai-viet-nam-4796490.html
https://www.vngcloud.vn/blog/what-are-large-language-models
https://arxiv.org/pdf/2305.13673
""".strip()