Syncbuz120's picture
new committ
1139524
raw
history blame
21.8 kB
import gradio as gr
import os
import logging
import gc
import psutil
from functools import wraps
import time
import threading
import json
from model.generate import generate_test_cases, get_generator, monitor_memory
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
# Thread-safe initialization
_init_lock = threading.Lock()
_initialized = False
def init_model():
"""Initialize model on startup"""
try:
# Skip AI model loading in low memory environments
memory_mb = psutil.Process().memory_info().rss / 1024 / 1024
if memory_mb > 200 or os.environ.get('HUGGINGFACE_SPACE'):
logger.info("⚠️ Skipping AI model loading due to memory constraints")
logger.info("πŸ”§ Using template-based generation mode")
return True
logger.info("πŸš€ Initializing AI model...")
generator = get_generator()
model_info = generator.get_model_info()
logger.info(f"βœ… Model initialized: {model_info['model_name']} | Memory: {model_info['memory_usage']}")
return True
except Exception as e:
logger.error(f"❌ Model initialization failed: {e}")
logger.info("πŸ”§ Falling back to template-based generation")
return False
def check_health():
"""Check system health"""
try:
memory_mb = psutil.Process().memory_info().rss / 1024 / 1024
return {
"status": "healthy" if memory_mb < 450 else "warning",
"memory_usage": f"{memory_mb:.1f}MB",
"memory_limit": "512MB"
}
except Exception:
return {"status": "unknown", "memory_usage": "unavailable"}
def smart_memory_monitor(func):
"""Enhanced memory monitoring with automatic cleanup"""
@wraps(func)
def wrapper(*args, **kwargs):
start_time = time.time()
try:
initial_memory = psutil.Process().memory_info().rss / 1024 / 1024
logger.info(f"πŸ” {func.__name__} started | Memory: {initial_memory:.1f}MB")
if initial_memory > 400:
logger.warning("⚠️ High memory detected, forcing cleanup...")
gc.collect()
result = func(*args, **kwargs)
return result
except Exception as e:
logger.error(f"❌ Error in {func.__name__}: {str(e)}")
return {
"error": "Internal server error occurred",
"message": "Please try again or contact support"
}
finally:
final_memory = psutil.Process().memory_info().rss / 1024 / 1024
execution_time = time.time() - start_time
logger.info(f"βœ… {func.__name__} completed | Memory: {final_memory:.1f}MB | Time: {execution_time:.2f}s")
if final_memory > 450:
logger.warning("🧹 High memory usage, forcing aggressive cleanup...")
gc.collect()
post_cleanup_memory = psutil.Process().memory_info().rss / 1024 / 1024
logger.info(f"🧹 Post-cleanup memory: {post_cleanup_memory:.1f}MB")
return wrapper
def ensure_initialized():
"""Ensure model is initialized (thread-safe)"""
global _initialized
if not _initialized:
with _init_lock:
if not _initialized:
logger.info("πŸš€ Gradio app starting up on Hugging Face Spaces...")
success = init_model()
if success:
logger.info("βœ… Startup completed successfully")
else:
logger.warning("⚠️ Model initialization failed, using template mode")
_initialized = True
def read_uploaded_file(file_obj):
"""Read and extract text from uploaded file"""
if file_obj is None:
return ""
try:
file_path = file_obj.name
file_extension = os.path.splitext(file_path)[1].lower()
if file_extension in ['.txt', '.md']:
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
elif file_extension in ['.doc', '.docx']:
try:
import docx
doc = docx.Document(file_path)
content = '\n'.join([paragraph.text for paragraph in doc.paragraphs])
except ImportError:
logger.warning("python-docx not available, trying to read as text")
with open(file_path, 'r', encoding='utf-8', errors='ignore') as f:
content = f.read()
elif file_extension == '.pdf':
try:
import PyPDF2
with open(file_path, 'rb') as f:
reader = PyPDF2.PdfReader(f)
content = ''
for page in reader.pages:
content += page.extract_text() + '\n'
except ImportError:
logger.warning("PyPDF2 not available, cannot read PDF files")
return "❌ PDF support requires PyPDF2. Please install it or use text/Word files."
else:
# Try to read as plain text
with open(file_path, 'r', encoding='utf-8', errors='ignore') as f:
content = f.read()
logger.info(f"πŸ“„ File read successfully: {len(content)} characters")
return content
except Exception as e:
logger.error(f"❌ Error reading file: {str(e)}")
return f"❌ Error reading file: {str(e)}"
def combine_inputs(prompt_text, uploaded_file):
"""Combine prompt text and uploaded file content"""
file_content = ""
if uploaded_file is not None:
file_content = read_uploaded_file(uploaded_file)
if file_content.startswith("❌"):
return file_content # Return error message
# Combine both inputs
combined_text = ""
if prompt_text and prompt_text.strip():
combined_text += "PROMPT:\n" + prompt_text.strip() + "\n\n"
if file_content and not file_content.startswith("❌"):
combined_text += "DOCUMENT CONTENT:\n" + file_content.strip()
if not combined_text.strip():
return "❌ Please provide either text input or upload a document."
return combined_text.strip()
# Initialize on startup
ensure_initialized()
@smart_memory_monitor
def generate_test_cases_api(prompt_text, uploaded_file):
"""Main API function for generating test cases with dual input support"""
# Combine inputs
combined_input = combine_inputs(prompt_text, uploaded_file)
if combined_input.startswith("❌"):
return {
"error": combined_input,
"test_cases": [],
"count": 0
}
if len(combined_input) > 8000:
logger.warning(f"Input text truncated from {len(combined_input)} to 8000 characters")
combined_input = combined_input[:8000]
try:
logger.info(f"🎯 Generating test cases for combined input ({len(combined_input)} chars)")
test_cases = generate_test_cases(combined_input)
if not test_cases or len(test_cases) == 0:
logger.error("No test cases generated")
return {
"error": "Failed to generate test cases",
"test_cases": [],
"count": 0
}
try:
generator = get_generator()
model_info = generator.get_model_info()
model_used = model_info.get("model_name", "Unknown Model")
generation_method = model_info.get("status", "unknown")
except Exception:
model_used = "Template-Based Generator"
generation_method = "template_mode"
if model_used == "Template-Based Generator":
model_algorithm = "Enhanced Rule-based Template"
model_reason = "Used enhanced rule-based generation with pattern matching and context analysis."
elif "distilgpt2" in model_used:
model_algorithm = "Transformer-based LM"
model_reason = "Used DistilGPT2 for balanced performance and memory efficiency."
elif "DialoGPT" in model_used:
model_algorithm = "Transformer-based LM"
model_reason = "Used DialoGPT-small as it fits within memory limits and handles conversational input well."
else:
model_algorithm = "Transformer-based LM"
model_reason = "Used available Hugging Face causal LM due to sufficient resources."
logger.info(f"βœ… Successfully generated {len(test_cases)} test cases")
return {
"test_cases": test_cases,
"count": len(test_cases),
"model_used": model_used,
"generation_method": generation_method,
"model_algorithm": model_algorithm,
"model_reason": model_reason,
"input_source": "Combined (Prompt + Document)" if (prompt_text and uploaded_file) else
"Document Upload" if uploaded_file else "Text Prompt"
}
except Exception as e:
logger.error(f"❌ Test case generation failed: {str(e)}")
return {
"error": "Failed to generate test cases",
"message": "Please try again with different input",
"test_cases": [],
"count": 0
}
def format_test_cases_output(result):
"""Format the test cases for display"""
if "error" in result:
return f"❌ Error: {result['error']}", ""
test_cases = result.get("test_cases", [])
if not test_cases:
return "No test cases generated", ""
# Format test cases for display
formatted_output = f"βœ… Generated {result['count']} Test Cases\n\n"
formatted_output += f"πŸ“₯ Input Source: {result.get('input_source', 'Unknown')}\n"
formatted_output += f"πŸ€– Model: {result['model_used']}\n"
formatted_output += f"πŸ”§ Algorithm: {result['model_algorithm']}\n"
formatted_output += f"πŸ’‘ Reason: {result['model_reason']}\n\n"
formatted_output += "=" * 60 + "\n"
formatted_output += "GENERATED TEST CASES\n"
formatted_output += "=" * 60 + "\n\n"
for i, tc in enumerate(test_cases, 1):
formatted_output += f"πŸ”Ή Test Case {i}:\n"
formatted_output += f" ID: {tc.get('id', f'TC_{i:03d}')}\n"
formatted_output += f" Title: {tc.get('title', 'N/A')}\n"
formatted_output += f" Priority: {tc.get('priority', 'Medium')}\n"
formatted_output += f" Category: {tc.get('category', 'Functional')}\n"
formatted_output += f" Description: {tc.get('description', 'N/A')}\n"
# Pre-conditions
preconditions = tc.get('preconditions', [])
if preconditions:
formatted_output += f" Pre-conditions:\n"
for j, precond in enumerate(preconditions, 1):
formatted_output += f" β€’ {precond}\n"
# Test steps
steps = tc.get('steps', [])
if isinstance(steps, list) and steps:
formatted_output += f" Test Steps:\n"
for j, step in enumerate(steps, 1):
formatted_output += f" {j}. {step}\n"
else:
formatted_output += f" Test Steps: {steps if steps else 'N/A'}\n"
formatted_output += f" Expected Result: {tc.get('expected', 'N/A')}\n"
# Post-conditions
postconditions = tc.get('postconditions', [])
if postconditions:
formatted_output += f" Post-conditions:\n"
for postcond in postconditions:
formatted_output += f" β€’ {postcond}\n"
formatted_output += f" Test Data: {tc.get('test_data', 'N/A')}\n"
formatted_output += "\n" + "-" * 40 + "\n\n"
# Return JSON for API access
json_output = json.dumps(result, indent=2)
return formatted_output, json_output
def gradio_generate_test_cases(prompt_text, uploaded_file):
"""Gradio interface function"""
result = generate_test_cases_api(prompt_text, uploaded_file)
return format_test_cases_output(result)
def get_system_status():
"""Get system status information"""
health_data = check_health()
try:
generator = get_generator()
model_info = generator.get_model_info()
except Exception:
model_info = {
"model_name": "Enhanced Template-Based Generator",
"status": "template_mode",
"optimization": "memory_safe"
}
status_info = f"""
πŸ₯ SYSTEM STATUS
================
Status: {health_data["status"]}
Memory Usage: {health_data["memory_usage"]}
Memory Limit: 512MB
πŸ€– MODEL INFORMATION
===================
Model Name: {model_info["model_name"]}
Status: {model_info["status"]}
Optimization: {model_info.get("optimization", "standard")}
πŸš€ APPLICATION INFO
==================
Version: 2.0.0-enhanced-input
Environment: Hugging Face Spaces
Backend: Gradio
Features: Text Input + File Upload
Supported Files: .txt, .md, .doc, .docx, .pdf
"""
return status_info
def get_model_info_detailed():
"""Get detailed model information"""
try:
generator = get_generator()
info = generator.get_model_info()
health_data = check_health()
detailed_info = f"""
πŸ”§ DETAILED MODEL INFORMATION
============================
Model Name: {info.get('model_name', 'N/A')}
Status: {info.get('status', 'N/A')}
Memory Usage: {info.get('memory_usage', 'N/A')}
Optimization Level: {info.get('optimization', 'N/A')}
πŸ“Š SYSTEM METRICS
================
System Status: {health_data['status']}
Current Memory: {health_data['memory_usage']}
Memory Limit: {health_data.get('memory_limit', 'N/A')}
βš™οΈ CONFIGURATION
===============
Environment: {"Hugging Face Spaces" if os.environ.get('SPACE_ID') else "Local"}
Backend: Gradio
Threading: Enabled
Memory Monitoring: Active
Input Methods: Text + File Upload
File Support: TXT, MD, DOC, DOCX, PDF
"""
return detailed_info
except Exception as e:
return f"❌ Error getting model info: {str(e)}"
# Create Gradio interface
with gr.Blocks(title="AI Test Case Generator - Enhanced", theme=gr.themes.Soft()) as app:
gr.Markdown("""
# πŸ§ͺ AI Test Case Generator - Enhanced Edition
Generate comprehensive test cases from Software Requirements Specification (SRS) documents using AI models.
**New Features:**
- πŸ“ **Dual Input Support**: Text prompt AND/OR document upload
- πŸ“„ **File Upload**: Support for .txt, .md, .doc, .docx, .pdf files
- 🎯 **Enhanced Test Cases**: More detailed and comprehensive test case generation
- πŸ”§ **Improved Templates**: Better rule-based fallback with pattern matching
- πŸ“Š **Better Formatting**: Enhanced output with priorities, categories, and conditions
""")
with gr.Tab("πŸ§ͺ Generate Test Cases"):
gr.Markdown("### Choose your input method: Enter text directly, upload a document, or use both!")
with gr.Row():
with gr.Column(scale=2):
# Text input
srs_input = gr.Textbox(
label="πŸ“ Text Input (SRS, Requirements, or Prompt)",
placeholder="Enter your requirements, user stories, or specific prompt here...\n\nExample:\n- The system shall provide user authentication with username and password\n- Users should be able to login, logout, and reset passwords\n- The system should validate input and display appropriate error messages\n- Performance requirement: Login should complete within 3 seconds",
lines=8,
max_lines=15
)
# File upload
file_upload = gr.File(
label="πŸ“„ Upload Document (Optional)",
file_types=[".txt", ".md", ".doc", ".docx", ".pdf"],
type="filepath"
)
gr.Markdown("""
**πŸ’‘ Tips:**
- Use **text input** for quick requirements or specific prompts
- Use **file upload** for complete SRS documents
- Use **both** to combine a specific prompt with a detailed document
- Supported formats: TXT, Markdown, Word (.doc/.docx), PDF
""")
generate_btn = gr.Button("πŸš€ Generate Test Cases", variant="primary", size="lg")
with gr.Column(scale=3):
output_display = gr.Textbox(
label="πŸ“‹ Generated Test Cases",
lines=25,
max_lines=35,
interactive=False
)
with gr.Row():
json_output = gr.Textbox(
label="πŸ“„ JSON Output (for API use)",
lines=12,
max_lines=20,
interactive=False
)
with gr.Tab("πŸ“Š System Status"):
with gr.Column():
status_display = gr.Textbox(
label="πŸ₯ System Health & Status",
lines=18,
interactive=False
)
refresh_status_btn = gr.Button("πŸ”„ Refresh Status", variant="secondary")
with gr.Tab("πŸ”§ Model Information"):
with gr.Column():
model_info_display = gr.Textbox(
label="πŸ€– Detailed Model Information",
lines=22,
interactive=False
)
refresh_model_btn = gr.Button("πŸ”„ Refresh Model Info", variant="secondary")
with gr.Tab("πŸ“š API Documentation"):
gr.Markdown("""
## πŸ”Œ Enhanced API Endpoints
This Gradio app supports both text input and file upload through API:
### Generate Test Cases (Text Only)
**Endpoint:** `/api/predict`
**Method:** POST
**Body:**
```json
{
"data": ["Your SRS text here", null]
}
```
### Generate Test Cases (With File)
**Endpoint:** `/api/predict`
**Method:** POST (multipart/form-data)
- Upload file and include text in the data array
**Response Format:**
```json
{
"data": [
"Formatted test cases output",
"JSON output with enhanced test cases"
]
}
```
### Enhanced Test Case Structure
```json
{
"test_cases": [
{
"id": "TC_001",
"title": "Test Case Title",
"priority": "High/Medium/Low",
"category": "Functional/Security/Performance/UI",
"description": "Detailed test description",
"preconditions": ["Pre-condition 1", "Pre-condition 2"],
"steps": ["Step 1", "Step 2", "Step 3"],
"expected": "Expected result",
"postconditions": ["Post-condition 1"],
"test_data": "Required test data"
}
],
"count": 5,
"model_used": "distilgpt2",
"model_algorithm": "Enhanced Rule-based Template",
"model_reason": "Detailed selection reasoning...",
"input_source": "Combined (Prompt + Document)"
}
```
### Example Usage (Python with File):
```python
import requests
# Text only
response = requests.post(
"YOUR_SPACE_URL/api/predict",
json={"data": ["User login requirements...", None]}
)
# With file upload (requires multipart handling)
files = {'file': open('requirements.pdf', 'rb')}
data = {'data': json.dumps(["Additional prompt", "file_placeholder"])}
response = requests.post("YOUR_SPACE_URL/api/predict", files=files, data=data)
```
## πŸ“‹ Supported File Formats
- **Text Files**: .txt, .md
- **Word Documents**: .doc, .docx (requires python-docx)
- **PDF Files**: .pdf (requires PyPDF2)
- **Fallback**: Any text-readable format
## 🎯 Enhanced Features
- **Dual Input**: Combine text prompts with document uploads
- **Better Test Cases**: Includes priorities, categories, pre/post-conditions
- **Smart Parsing**: Automatically detects requirement types and generates appropriate tests
- **Memory Optimized**: Handles large documents efficiently
""")
# Event handlers
generate_btn.click(
fn=gradio_generate_test_cases,
inputs=[srs_input, file_upload],
outputs=[output_display, json_output]
)
refresh_status_btn.click(
fn=get_system_status,
outputs=[status_display]
)
refresh_model_btn.click(
fn=get_model_info_detailed,
outputs=[model_info_display]
)
# Load initial status
app.load(
fn=get_system_status,
outputs=[status_display]
)
app.load(
fn=get_model_info_detailed,
outputs=[model_info_display]
)
# Launch the app
if __name__ == "__main__":
port = int(os.environ.get("PORT", 7860))
logger.info(f"πŸš€ Starting Enhanced Gradio app on port {port}")
logger.info(f"πŸ–₯️ Environment: {'Hugging Face Spaces' if os.environ.get('SPACE_ID') else 'Local'}")
logger.info("πŸ“ Features: Text Input + File Upload Support")
app.launch(
server_name="0.0.0.0",
server_port=port,
share=False,
show_error=True
)