testCaseGenerator / model /generate.py
Syncbuz120's picture
Prepare Flask backend for Hugging Face Spaces deployment
0e92f07
raw
history blame
9.32 kB
import os
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import logging
import psutil
import re
import gc
# Initialize logger
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
# List of memory-optimized models
MEMORY_OPTIMIZED_MODELS = [
"gpt2", # ~500MB
"distilgpt2", # ~250MB
"microsoft/DialoGPT-small", # ~250MB
"huggingface/CodeBERTa-small-v1", # Code tasks
]
# Singleton state
_generator_instance = None
def get_optimal_model_for_memory():
"""Select the best model based on available memory."""
available_memory = psutil.virtual_memory().available / (1024 * 1024) # MB
logger.info(f"Available memory: {available_memory:.1f}MB")
if available_memory < 300:
return None # Use template fallback
elif available_memory < 600:
return "microsoft/DialoGPT-small"
else:
return "distilgpt2"
def load_model_with_memory_optimization(model_name):
"""Load model with low memory settings."""
try:
logger.info(f"Loading {model_name} with memory optimizations...")
tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side='left', use_fast=True)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16,
device_map="cpu",
low_cpu_mem_usage=True,
use_cache=False,
)
model.eval()
model.gradient_checkpointing_enable()
logger.info(f"βœ… Model {model_name} loaded successfully")
return tokenizer, model
except Exception as e:
logger.error(f"❌ Failed to load model {model_name}: {e}")
return None, None
def extract_keywords(text):
common_keywords = [
'login', 'authentication', 'user', 'password', 'database', 'data',
'interface', 'api', 'function', 'feature', 'requirement', 'system',
'input', 'output', 'validation', 'error', 'security', 'performance'
]
words = re.findall(r'\b\w+\b', text.lower())
return [word for word in words if word in common_keywords]
def generate_template_based_test_cases(srs_text):
keywords = extract_keywords(srs_text)
test_cases = []
if any(word in keywords for word in ['login', 'authentication', 'user', 'password']):
test_cases.extend([
{
"id": "TC_001",
"title": "Valid Login Test",
"description": "Test login with valid credentials",
"steps": ["Enter valid username", "Enter valid password", "Click login"],
"expected": "User should be logged in successfully"
},
{
"id": "TC_002",
"title": "Invalid Login Test",
"description": "Test login with invalid credentials",
"steps": ["Enter invalid username", "Enter invalid password", "Click login"],
"expected": "Error message should be displayed"
}
])
if any(word in keywords for word in ['database', 'data', 'store', 'save']):
test_cases.append({
"id": "TC_003",
"title": "Data Storage Test",
"description": "Test data storage functionality",
"steps": ["Enter data", "Save data", "Verify storage"],
"expected": "Data should be stored correctly"
})
if not test_cases:
test_cases = [
{
"id": "TC_001",
"title": "Basic Functionality Test",
"description": "Test basic system functionality",
"steps": ["Access the system", "Perform basic operations", "Verify results"],
"expected": "System should work as expected"
}
]
return test_cases
def parse_generated_test_cases(generated_text):
lines = generated_text.split('\n')
test_cases = []
current_case = {}
case_counter = 1
for line in lines:
line = line.strip()
if line.startswith(('1.', '2.', '3.', 'TC', 'Test')):
if current_case:
test_cases.append(current_case)
current_case = {
"id": f"TC_{case_counter:03d}",
"title": line,
"description": line,
"steps": ["Execute the test"],
"expected": "Test should pass"
}
case_counter += 1
if current_case:
test_cases.append(current_case)
if not test_cases:
return [{
"id": "TC_001",
"title": "Generated Test Case",
"description": "Auto-generated test case based on requirements",
"steps": ["Review requirements", "Execute test", "Verify results"],
"expected": "Requirements should be met"
}]
return test_cases
def generate_with_ai_model(srs_text, tokenizer, model):
max_input_length = 200
if len(srs_text) > max_input_length:
srs_text = srs_text[:max_input_length]
prompt = f"""Generate test cases for this software requirement:
{srs_text}
Test Cases:
1."""
try:
inputs = tokenizer.encode(
prompt,
return_tensors="pt",
max_length=150,
truncation=True
)
with torch.no_grad():
outputs = model.generate(
inputs,
max_new_tokens=100,
num_return_sequences=1,
temperature=0.7,
do_sample=True,
pad_token_id=tokenizer.eos_token_id,
use_cache=False,
)
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
del inputs, outputs
torch.cuda.empty_cache() if torch.cuda.is_available() else None
return parse_generated_test_cases(generated_text)
except Exception as e:
logger.error(f"❌ AI generation failed: {e}")
raise
def generate_with_fallback(srs_text):
model_name = get_optimal_model_for_memory()
if model_name:
tokenizer, model = load_model_with_memory_optimization(model_name)
if tokenizer and model:
try:
test_cases = generate_with_ai_model(srs_text, tokenizer, model)
reason = get_algorithm_reason(model_name)
return test_cases, model_name, "transformer (causal LM)", reason
except Exception as e:
logger.warning(f"AI generation failed: {e}, falling back to templates")
logger.info("⚠️ Using fallback template-based generation")
test_cases = generate_template_based_test_cases(srs_text)
return test_cases, "Template-Based Generator", "rule-based", "Low memory - fallback to rule-based generation"
# βœ… Function exposed to app.py
def generate_test_cases(srs_text):
return generate_with_fallback(srs_text)[0]
def get_generator():
global _generator_instance
if _generator_instance is None:
class Generator:
def __init__(self):
self.model_name = get_optimal_model_for_memory()
self.tokenizer = None
self.model = None
if self.model_name:
self.tokenizer, self.model = load_model_with_memory_optimization(self.model_name)
def get_model_info(self):
mem = psutil.Process().memory_info().rss / 1024 / 1024
return {
"model_name": self.model_name if self.model_name else "Template-Based Generator",
"status": "loaded" if self.model else "template_mode",
"memory_usage": f"{mem:.1f}MB",
"optimization": "low_memory"
}
_generator_instance = Generator()
return _generator_instance
def monitor_memory():
mem = psutil.Process().memory_info().rss / 1024 / 1024
logger.info(f"Memory usage: {mem:.1f}MB")
if mem > 450:
gc.collect()
logger.info("Memory cleanup triggered")
# βœ… NEW FUNCTION for enhanced output: test cases + model info + reason
def generate_test_cases_and_info(input_text):
test_cases, model_name, algorithm_used, reason = generate_with_fallback(input_text)
return {
"model": model_name,
"algorithm": algorithm_used,
"reason": reason,
"test_cases": test_cases
}
# βœ… Explain why each algorithm is selected
def get_algorithm_reason(model_name):
if model_name == "microsoft/DialoGPT-small":
return "Selected due to low memory availability; DialoGPT-small provides conversational understanding in limited memory environments."
elif model_name == "distilgpt2":
return "Selected for its balance between performance and low memory usage. Ideal for small environments needing causal language modeling."
elif model_name == "gpt2":
return "Chosen for general-purpose text generation with moderate memory headroom."
elif model_name is None:
return "No model used due to insufficient memory. Rule-based template generation chosen instead."
else:
return "Model selected based on best tradeoff between memory usage and language generation capability."