Spaces:
Running
Running
Commit
·
1b892e4
1
Parent(s):
494bf87
newwww1w3
Browse files- model/generate.py +66 -61
model/generate.py
CHANGED
@@ -15,31 +15,26 @@ MEMORY_OPTIMIZED_MODELS = [
|
|
15 |
"gpt2", # ~500MB
|
16 |
"distilgpt2", # ~250MB
|
17 |
"microsoft/DialoGPT-small", # ~250MB
|
18 |
-
"huggingface/CodeBERTa-small-v1", # Code tasks
|
19 |
]
|
20 |
|
21 |
-
# Singleton state
|
22 |
_generator_instance = None
|
23 |
|
24 |
def get_optimal_model_for_memory():
|
25 |
-
"""Select the best model based on available memory."""
|
26 |
available_memory = psutil.virtual_memory().available / (1024 * 1024) # MB
|
27 |
logger.info(f"Available memory: {available_memory:.1f}MB")
|
28 |
|
29 |
if available_memory < 300:
|
30 |
-
return None
|
31 |
elif available_memory < 600:
|
32 |
return "microsoft/DialoGPT-small"
|
33 |
else:
|
34 |
return "distilgpt2"
|
35 |
|
36 |
def load_model_with_memory_optimization(model_name):
|
37 |
-
"""Load model with low memory settings."""
|
38 |
try:
|
39 |
logger.info(f"Loading {model_name} with memory optimizations...")
|
40 |
|
41 |
tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side='left', use_fast=True)
|
42 |
-
|
43 |
if tokenizer.pad_token is None:
|
44 |
tokenizer.pad_token = tokenizer.eos_token
|
45 |
|
@@ -72,104 +67,119 @@ def extract_keywords(text):
|
|
72 |
def generate_template_based_test_cases(srs_text):
|
73 |
keywords = extract_keywords(srs_text)
|
74 |
test_cases = []
|
|
|
75 |
|
76 |
if any(word in keywords for word in ['login', 'authentication', 'user', 'password']):
|
77 |
test_cases.extend([
|
78 |
{
|
79 |
-
"id": "
|
80 |
"title": "Valid Login Test",
|
81 |
"description": "Test login with valid credentials",
|
82 |
"steps": ["Enter valid username", "Enter valid password", "Click login"],
|
83 |
"expected": "User should be logged in successfully"
|
84 |
},
|
85 |
{
|
86 |
-
"id": "
|
87 |
"title": "Invalid Login Test",
|
88 |
"description": "Test login with invalid credentials",
|
89 |
"steps": ["Enter invalid username", "Enter invalid password", "Click login"],
|
90 |
"expected": "Error message should be displayed"
|
91 |
}
|
92 |
])
|
|
|
93 |
|
94 |
if any(word in keywords for word in ['database', 'data', 'store', 'save']):
|
95 |
test_cases.append({
|
96 |
-
"id": "
|
97 |
"title": "Data Storage Test",
|
98 |
"description": "Test data storage functionality",
|
99 |
"steps": ["Enter data", "Save data", "Verify storage"],
|
100 |
"expected": "Data should be stored correctly"
|
101 |
})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
if not test_cases:
|
104 |
-
test_cases = [
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
}
|
112 |
-
]
|
113 |
|
114 |
return test_cases
|
115 |
|
116 |
-
def parse_generated_test_cases(
|
117 |
-
lines =
|
118 |
test_cases = []
|
119 |
-
|
|
|
120 |
case_counter = 1
|
121 |
|
122 |
for line in lines:
|
123 |
line = line.strip()
|
124 |
-
if
|
125 |
-
if
|
126 |
-
|
127 |
-
|
|
|
|
|
128 |
"id": f"TC_{case_counter:03d}",
|
129 |
"title": line,
|
130 |
-
"description": line
|
131 |
-
"steps": ["Execute the test"],
|
132 |
-
"expected": "Test should pass"
|
133 |
}
|
|
|
134 |
case_counter += 1
|
|
|
|
|
135 |
|
136 |
-
if
|
137 |
-
|
|
|
|
|
138 |
|
139 |
if not test_cases:
|
140 |
return [{
|
141 |
"id": "TC_001",
|
142 |
"title": "Generated Test Case",
|
143 |
-
"description": "Auto-generated
|
144 |
-
"steps": ["Review requirements", "Execute test"
|
145 |
-
"expected": "Requirements
|
146 |
}]
|
147 |
|
148 |
return test_cases
|
149 |
|
150 |
def generate_with_ai_model(srs_text, tokenizer, model):
|
151 |
-
|
152 |
-
if len(srs_text) > max_input_length:
|
153 |
-
srs_text = srs_text[:max_input_length]
|
154 |
-
|
155 |
-
prompt = f"""Generate test cases for this software requirement:
|
156 |
{srs_text}
|
157 |
|
158 |
Test Cases:
|
159 |
1."""
|
160 |
|
|
|
|
|
|
|
161 |
try:
|
162 |
inputs = tokenizer.encode(
|
163 |
prompt,
|
164 |
return_tensors="pt",
|
165 |
-
|
166 |
-
|
167 |
)
|
168 |
|
169 |
with torch.no_grad():
|
170 |
outputs = model.generate(
|
171 |
inputs,
|
172 |
-
max_new_tokens=
|
173 |
num_return_sequences=1,
|
174 |
temperature=0.7,
|
175 |
do_sample=True,
|
@@ -203,32 +213,38 @@ def generate_with_fallback(srs_text):
|
|
203 |
test_cases = generate_template_based_test_cases(srs_text)
|
204 |
return test_cases, "Template-Based Generator", "rule-based", "Low memory - fallback to rule-based generation"
|
205 |
|
206 |
-
# ✅ Function exposed to app.py
|
207 |
def generate_test_cases(srs_text):
|
208 |
return generate_with_fallback(srs_text)[0]
|
209 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
210 |
def get_generator():
|
211 |
global _generator_instance
|
212 |
if _generator_instance is None:
|
213 |
class Generator:
|
214 |
def __init__(self):
|
215 |
self.model_name = get_optimal_model_for_memory()
|
216 |
-
self.tokenizer = None
|
217 |
-
self.model = None
|
218 |
if self.model_name:
|
219 |
self.tokenizer, self.model = load_model_with_memory_optimization(self.model_name)
|
220 |
|
221 |
def get_model_info(self):
|
222 |
mem = psutil.Process().memory_info().rss / 1024 / 1024
|
223 |
return {
|
224 |
-
"model_name": self.model_name
|
225 |
"status": "loaded" if self.model else "template_mode",
|
226 |
"memory_usage": f"{mem:.1f}MB",
|
227 |
"optimization": "low_memory"
|
228 |
}
|
229 |
|
230 |
_generator_instance = Generator()
|
231 |
-
|
232 |
return _generator_instance
|
233 |
|
234 |
def monitor_memory():
|
@@ -238,25 +254,14 @@ def monitor_memory():
|
|
238 |
gc.collect()
|
239 |
logger.info("Memory cleanup triggered")
|
240 |
|
241 |
-
# ✅ NEW FUNCTION for enhanced output: test cases + model info + reason
|
242 |
-
def generate_test_cases_and_info(input_text):
|
243 |
-
test_cases, model_name, algorithm_used, reason = generate_with_fallback(input_text)
|
244 |
-
return {
|
245 |
-
"model": model_name,
|
246 |
-
"algorithm": algorithm_used,
|
247 |
-
"reason": reason,
|
248 |
-
"test_cases": test_cases
|
249 |
-
}
|
250 |
-
|
251 |
-
# ✅ Explain why each algorithm is selected
|
252 |
def get_algorithm_reason(model_name):
|
253 |
if model_name == "microsoft/DialoGPT-small":
|
254 |
return "Selected due to low memory availability; DialoGPT-small provides conversational understanding in limited memory environments."
|
255 |
elif model_name == "distilgpt2":
|
256 |
-
return "Selected for its balance between performance and low memory usage.
|
257 |
elif model_name == "gpt2":
|
258 |
-
return "Chosen for general-purpose
|
259 |
elif model_name is None:
|
260 |
-
return "
|
261 |
else:
|
262 |
-
return "
|
|
|
15 |
"gpt2", # ~500MB
|
16 |
"distilgpt2", # ~250MB
|
17 |
"microsoft/DialoGPT-small", # ~250MB
|
|
|
18 |
]
|
19 |
|
|
|
20 |
_generator_instance = None
|
21 |
|
22 |
def get_optimal_model_for_memory():
|
|
|
23 |
available_memory = psutil.virtual_memory().available / (1024 * 1024) # MB
|
24 |
logger.info(f"Available memory: {available_memory:.1f}MB")
|
25 |
|
26 |
if available_memory < 300:
|
27 |
+
return None
|
28 |
elif available_memory < 600:
|
29 |
return "microsoft/DialoGPT-small"
|
30 |
else:
|
31 |
return "distilgpt2"
|
32 |
|
33 |
def load_model_with_memory_optimization(model_name):
|
|
|
34 |
try:
|
35 |
logger.info(f"Loading {model_name} with memory optimizations...")
|
36 |
|
37 |
tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side='left', use_fast=True)
|
|
|
38 |
if tokenizer.pad_token is None:
|
39 |
tokenizer.pad_token = tokenizer.eos_token
|
40 |
|
|
|
67 |
def generate_template_based_test_cases(srs_text):
|
68 |
keywords = extract_keywords(srs_text)
|
69 |
test_cases = []
|
70 |
+
counter = 1
|
71 |
|
72 |
if any(word in keywords for word in ['login', 'authentication', 'user', 'password']):
|
73 |
test_cases.extend([
|
74 |
{
|
75 |
+
"id": f"TC_{counter:03d}",
|
76 |
"title": "Valid Login Test",
|
77 |
"description": "Test login with valid credentials",
|
78 |
"steps": ["Enter valid username", "Enter valid password", "Click login"],
|
79 |
"expected": "User should be logged in successfully"
|
80 |
},
|
81 |
{
|
82 |
+
"id": f"TC_{counter+1:03d}",
|
83 |
"title": "Invalid Login Test",
|
84 |
"description": "Test login with invalid credentials",
|
85 |
"steps": ["Enter invalid username", "Enter invalid password", "Click login"],
|
86 |
"expected": "Error message should be displayed"
|
87 |
}
|
88 |
])
|
89 |
+
counter += 2
|
90 |
|
91 |
if any(word in keywords for word in ['database', 'data', 'store', 'save']):
|
92 |
test_cases.append({
|
93 |
+
"id": f"TC_{counter:03d}",
|
94 |
"title": "Data Storage Test",
|
95 |
"description": "Test data storage functionality",
|
96 |
"steps": ["Enter data", "Save data", "Verify storage"],
|
97 |
"expected": "Data should be stored correctly"
|
98 |
})
|
99 |
+
counter += 1
|
100 |
+
|
101 |
+
if any(word in keywords for word in ['validation', 'error']):
|
102 |
+
test_cases.append({
|
103 |
+
"id": f"TC_{counter:03d}",
|
104 |
+
"title": "Input Validation Test",
|
105 |
+
"description": "Test system input validation",
|
106 |
+
"steps": ["Enter invalid input", "Submit form"],
|
107 |
+
"expected": "System should prevent submission and show error"
|
108 |
+
})
|
109 |
|
110 |
if not test_cases:
|
111 |
+
test_cases = [{
|
112 |
+
"id": "TC_001",
|
113 |
+
"title": "Generic Functional Test",
|
114 |
+
"description": "Test basic system functionality",
|
115 |
+
"steps": ["Access system", "Perform operations"],
|
116 |
+
"expected": "System works correctly"
|
117 |
+
}]
|
|
|
|
|
118 |
|
119 |
return test_cases
|
120 |
|
121 |
+
def parse_generated_test_cases(text):
|
122 |
+
lines = text.split('\n')
|
123 |
test_cases = []
|
124 |
+
current = {}
|
125 |
+
steps = []
|
126 |
case_counter = 1
|
127 |
|
128 |
for line in lines:
|
129 |
line = line.strip()
|
130 |
+
if re.match(r'^\d+\.', line) or line.lower().startswith("test case"):
|
131 |
+
if current:
|
132 |
+
current["steps"] = steps or ["Execute the test"]
|
133 |
+
current["expected"] = "Test should pass"
|
134 |
+
test_cases.append(current)
|
135 |
+
current = {
|
136 |
"id": f"TC_{case_counter:03d}",
|
137 |
"title": line,
|
138 |
+
"description": line
|
|
|
|
|
139 |
}
|
140 |
+
steps = []
|
141 |
case_counter += 1
|
142 |
+
elif line.lower().startswith("step") or line.startswith("-"):
|
143 |
+
steps.append(line.lstrip('- ').strip())
|
144 |
|
145 |
+
if current:
|
146 |
+
current["steps"] = steps or ["Execute the test"]
|
147 |
+
current["expected"] = "Test should pass"
|
148 |
+
test_cases.append(current)
|
149 |
|
150 |
if not test_cases:
|
151 |
return [{
|
152 |
"id": "TC_001",
|
153 |
"title": "Generated Test Case",
|
154 |
+
"description": "Auto-generated based on SRS",
|
155 |
+
"steps": ["Review requirements", "Execute test"],
|
156 |
+
"expected": "Requirements met"
|
157 |
}]
|
158 |
|
159 |
return test_cases
|
160 |
|
161 |
def generate_with_ai_model(srs_text, tokenizer, model):
|
162 |
+
prompt = f"""Generate detailed and numbered test cases for the following software requirement:
|
|
|
|
|
|
|
|
|
163 |
{srs_text}
|
164 |
|
165 |
Test Cases:
|
166 |
1."""
|
167 |
|
168 |
+
input_length = len(srs_text.split())
|
169 |
+
max_new_tokens = min(max(100, input_length * 2), 600)
|
170 |
+
|
171 |
try:
|
172 |
inputs = tokenizer.encode(
|
173 |
prompt,
|
174 |
return_tensors="pt",
|
175 |
+
truncation=True,
|
176 |
+
max_length=512
|
177 |
)
|
178 |
|
179 |
with torch.no_grad():
|
180 |
outputs = model.generate(
|
181 |
inputs,
|
182 |
+
max_new_tokens=max_new_tokens,
|
183 |
num_return_sequences=1,
|
184 |
temperature=0.7,
|
185 |
do_sample=True,
|
|
|
213 |
test_cases = generate_template_based_test_cases(srs_text)
|
214 |
return test_cases, "Template-Based Generator", "rule-based", "Low memory - fallback to rule-based generation"
|
215 |
|
|
|
216 |
def generate_test_cases(srs_text):
|
217 |
return generate_with_fallback(srs_text)[0]
|
218 |
|
219 |
+
def generate_test_cases_and_info(input_text):
|
220 |
+
test_cases, model_name, algorithm_used, reason = generate_with_fallback(input_text)
|
221 |
+
return {
|
222 |
+
"model": model_name,
|
223 |
+
"algorithm": algorithm_used,
|
224 |
+
"reason": reason,
|
225 |
+
"test_cases": test_cases
|
226 |
+
}
|
227 |
+
|
228 |
def get_generator():
|
229 |
global _generator_instance
|
230 |
if _generator_instance is None:
|
231 |
class Generator:
|
232 |
def __init__(self):
|
233 |
self.model_name = get_optimal_model_for_memory()
|
234 |
+
self.tokenizer, self.model = None, None
|
|
|
235 |
if self.model_name:
|
236 |
self.tokenizer, self.model = load_model_with_memory_optimization(self.model_name)
|
237 |
|
238 |
def get_model_info(self):
|
239 |
mem = psutil.Process().memory_info().rss / 1024 / 1024
|
240 |
return {
|
241 |
+
"model_name": self.model_name or "Template-Based Generator",
|
242 |
"status": "loaded" if self.model else "template_mode",
|
243 |
"memory_usage": f"{mem:.1f}MB",
|
244 |
"optimization": "low_memory"
|
245 |
}
|
246 |
|
247 |
_generator_instance = Generator()
|
|
|
248 |
return _generator_instance
|
249 |
|
250 |
def monitor_memory():
|
|
|
254 |
gc.collect()
|
255 |
logger.info("Memory cleanup triggered")
|
256 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
257 |
def get_algorithm_reason(model_name):
|
258 |
if model_name == "microsoft/DialoGPT-small":
|
259 |
return "Selected due to low memory availability; DialoGPT-small provides conversational understanding in limited memory environments."
|
260 |
elif model_name == "distilgpt2":
|
261 |
+
return "Selected for its balance between performance and low memory usage."
|
262 |
elif model_name == "gpt2":
|
263 |
+
return "Chosen for general-purpose generation with moderate memory headroom."
|
264 |
elif model_name is None:
|
265 |
+
return "Rule-based fallback due to memory constraints."
|
266 |
else:
|
267 |
+
return "Chosen based on available memory and task compatibility."
|