增加lora合并导入
Browse files- .gitignore +2 -0
- app.py +17 -6
- rwkv_lora.py +325 -0
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
#python
|
2 |
+
__pycache__/
|
app.py
CHANGED
@@ -3,6 +3,7 @@ import argparse
|
|
3 |
import os, gc, torch
|
4 |
from datetime import datetime
|
5 |
from huggingface_hub import hf_hub_download
|
|
|
6 |
# from pynvml import *
|
7 |
# nvmlInit()
|
8 |
# gpu_h = nvmlDeviceGetHandleByIndex(0)
|
@@ -14,20 +15,30 @@ parser = argparse.ArgumentParser(prog = 'ChatGal RWKV')
|
|
14 |
parser.add_argument('--share',action='store_true')
|
15 |
parser.add_argument('--ckpt',type=str,default="rwkv-loramerge_0.5-0426-v2-4096-epoch11.pth")
|
16 |
parser.add_argument('--model_path',type=str,default=None,help="local model path")
|
|
|
|
|
|
|
17 |
args = parser.parse_args()
|
18 |
os.environ["RWKV_JIT_ON"] = '1'
|
19 |
|
20 |
-
from rwkv.model import RWKV
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
if args.model_path:
|
22 |
model_path = args.model_path
|
23 |
else:
|
24 |
model_path = hf_hub_download(repo_id="Synthia/ChatGalRWKV", filename=args.ckpt)
|
25 |
-
if 'ON_COLAB' in os.environ and os.environ['ON_COLAB'] == '1':
|
|
|
26 |
os.environ["RWKV_JIT_ON"] = '0'
|
27 |
os.environ["RWKV_CUDA_ON"] = '0' # if '1' then use CUDA kernel for seq mode (much faster)
|
28 |
-
model = RWKV(model=model_path, strategy='cuda bf16')
|
29 |
else:
|
30 |
-
model = RWKV(model=model_path, strategy='cpu bf16')
|
31 |
from utils import PIPELINE, PIPELINE_ARGS
|
32 |
pipeline = PIPELINE(model, "20B_tokenizer.json")
|
33 |
|
@@ -183,6 +194,6 @@ demo = gr.TabbedInterface(
|
|
183 |
|
184 |
demo.queue(max_size=5)
|
185 |
if args.share:
|
186 |
-
demo.launch(share=True)
|
187 |
else:
|
188 |
-
demo.launch(share=False)
|
|
|
3 |
import os, gc, torch
|
4 |
from datetime import datetime
|
5 |
from huggingface_hub import hf_hub_download
|
6 |
+
import torch
|
7 |
# from pynvml import *
|
8 |
# nvmlInit()
|
9 |
# gpu_h = nvmlDeviceGetHandleByIndex(0)
|
|
|
15 |
parser.add_argument('--share',action='store_true')
|
16 |
parser.add_argument('--ckpt',type=str,default="rwkv-loramerge_0.5-0426-v2-4096-epoch11.pth")
|
17 |
parser.add_argument('--model_path',type=str,default=None,help="local model path")
|
18 |
+
parser.add_argument('--lora', type=str, default=None, help='lora checkpoint path')
|
19 |
+
parser.add_argument('--lora_alpha', type=float, default=0, help='lora alpha')
|
20 |
+
parser.add_argument('--lora_layer_filter',type=str,default=None,help='layer filter. Default merge all layer. Example: "25-31"')
|
21 |
args = parser.parse_args()
|
22 |
os.environ["RWKV_JIT_ON"] = '1'
|
23 |
|
24 |
+
# from rwkv.model import RWKV
|
25 |
+
from rwkv_lora import RWKV
|
26 |
+
lora_kwargs = {
|
27 |
+
"lora":args.lora,
|
28 |
+
"lora_alpha":args.lora_alpha,
|
29 |
+
"lora_layer_filter":args.lora_layer_filter
|
30 |
+
}
|
31 |
if args.model_path:
|
32 |
model_path = args.model_path
|
33 |
else:
|
34 |
model_path = hf_hub_download(repo_id="Synthia/ChatGalRWKV", filename=args.ckpt)
|
35 |
+
# if 'ON_COLAB' in os.environ and os.environ['ON_COLAB'] == '1':
|
36 |
+
if torch.cuda.is_available() and torch.cuda.device_count()>0:
|
37 |
os.environ["RWKV_JIT_ON"] = '0'
|
38 |
os.environ["RWKV_CUDA_ON"] = '0' # if '1' then use CUDA kernel for seq mode (much faster)
|
39 |
+
model = RWKV(model=model_path, strategy='cuda bf16',**lora_kwargs)
|
40 |
else:
|
41 |
+
model = RWKV(model=model_path, strategy='cpu bf16',**lora_kwargs)
|
42 |
from utils import PIPELINE, PIPELINE_ARGS
|
43 |
pipeline = PIPELINE(model, "20B_tokenizer.json")
|
44 |
|
|
|
194 |
|
195 |
demo.queue(max_size=5)
|
196 |
if args.share:
|
197 |
+
demo.launch(share=True,server_name="0.0.0.0",server_port=58888)
|
198 |
else:
|
199 |
+
demo.launch(share=False,server_port=58888)
|
rwkv_lora.py
ADDED
@@ -0,0 +1,325 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import OrderedDict
|
2 |
+
from typing import Dict
|
3 |
+
import typing
|
4 |
+
|
5 |
+
from rwkv.model import RWKV as RWKV_UPSTREAM
|
6 |
+
import types, gc, os, time, re
|
7 |
+
import torch
|
8 |
+
from torch.nn import functional as F
|
9 |
+
|
10 |
+
def get_filter_keys(layer_filter):
|
11 |
+
if layer_filter:
|
12 |
+
layers = []
|
13 |
+
for layer in layer_filter.split(' '):
|
14 |
+
if layer.isdecimal():
|
15 |
+
layers.append(int(layer))
|
16 |
+
elif '-' in layer:
|
17 |
+
start,_,end = layer.partition('-')
|
18 |
+
start,end = int(start),int(end)
|
19 |
+
layers.extend(range(start,end+1))
|
20 |
+
else:
|
21 |
+
raise NotImplementedError("layer_filter Not implemented:",layer_filter)
|
22 |
+
layers = sorted(set(layers))
|
23 |
+
layer_prefixes = tuple(f"blocks.{l}." for l in layers)
|
24 |
+
def filter_keys(keys):
|
25 |
+
new_keys = []
|
26 |
+
for key in keys:
|
27 |
+
if key.startswith("blocks."):
|
28 |
+
if not key.startswith(layer_prefixes):
|
29 |
+
continue
|
30 |
+
new_keys.append(key)
|
31 |
+
return new_keys
|
32 |
+
|
33 |
+
else:
|
34 |
+
def filter_keys(keys):
|
35 |
+
return keys
|
36 |
+
return filter_keys
|
37 |
+
|
38 |
+
def lora_merge(base_model,lora,lora_alpha,device="cuda",layer_filter=None,):
|
39 |
+
print(f"Loading LoRA: {lora}")
|
40 |
+
print(f"LoRA alpha={lora_alpha}, layer_filter={layer_filter}")
|
41 |
+
filter_keys = get_filter_keys(layer_filter)
|
42 |
+
w: Dict[str, torch.Tensor] = torch.load(base_model, map_location='cpu')
|
43 |
+
# merge LoRA-only slim checkpoint into the main weights
|
44 |
+
w_lora: Dict[str, torch.Tensor] = torch.load(lora, map_location='cpu')
|
45 |
+
# pdb.set_trace() #DEBUG
|
46 |
+
for k in filter_keys(w_lora.keys()): #处理time_mixing之类的融合
|
47 |
+
w[k] = w_lora[k]
|
48 |
+
output_w: typing.OrderedDict[str, torch.Tensor] = OrderedDict()
|
49 |
+
# merge LoRA weights
|
50 |
+
keys = list(w.keys())
|
51 |
+
for k in keys:
|
52 |
+
if k.endswith('.weight'):
|
53 |
+
prefix = k[:-len('.weight')]
|
54 |
+
lora_A = prefix + '.lora_A'
|
55 |
+
lora_B = prefix + '.lora_B'
|
56 |
+
if lora_A in keys:
|
57 |
+
assert lora_B in keys
|
58 |
+
print(f'merging {lora_A} and {lora_B} into {k}')
|
59 |
+
assert w[lora_B].shape[1] == w[lora_A].shape[0]
|
60 |
+
lora_r = w[lora_B].shape[1]
|
61 |
+
w[k] = w[k].to(device=device)
|
62 |
+
w[lora_A] = w[lora_A].to(device=device)
|
63 |
+
w[lora_B] = w[lora_B].to(device=device)
|
64 |
+
w[k] += w[lora_B] @ w[lora_A] * (lora_alpha / lora_r)
|
65 |
+
output_w[k] = w[k].to(device='cpu', copy=True)
|
66 |
+
del w[k]
|
67 |
+
del w[lora_A]
|
68 |
+
del w[lora_B]
|
69 |
+
continue
|
70 |
+
|
71 |
+
if 'lora' not in k:
|
72 |
+
print(f'retaining {k}')
|
73 |
+
output_w[k] = w[k].clone()
|
74 |
+
del w[k]
|
75 |
+
return output_w
|
76 |
+
|
77 |
+
class RWKV(RWKV_UPSTREAM):
|
78 |
+
def __init__(self, model, strategy, verbose = True, convert_and_save_and_exit = None,lora=None,lora_alpha=0,lora_layer_filter=None):
|
79 |
+
super(RWKV_UPSTREAM,self).__init__()
|
80 |
+
if verbose:
|
81 |
+
prxxx = lambda *args, **kwargs: print(*args, **kwargs)
|
82 |
+
else:
|
83 |
+
prxxx = lambda *args, **kwargs: None
|
84 |
+
|
85 |
+
STRATEGY_REGEX = r"^(?:(?:^|->) *(?:cuda(?::[\d]+)?|cpu|mps) (?:fp(?:16|32)|bf16)(?:i8|i4|i3)?(?: \*[\d]+\+?)? *)+$"
|
86 |
+
if not re.match(STRATEGY_REGEX, strategy):
|
87 |
+
raise ValueError("Invalid strategy. Please read https://pypi.org/project/rwkv/")
|
88 |
+
|
89 |
+
strategy = ('->'.join([x.strip() for x in strategy.split('->')])).replace('->', ' -> ')
|
90 |
+
self.args = types.SimpleNamespace()
|
91 |
+
args = self.args
|
92 |
+
args.MODEL_NAME = model
|
93 |
+
args.strategy_string = strategy
|
94 |
+
|
95 |
+
# Rescale for fp16 mode: set x = x/2 every X layer (to avoid fp16 overflow)
|
96 |
+
self.RESCALE_LAYER = 6 if 'fp16' in strategy else 0
|
97 |
+
prxxx(f'RWKV_JIT_ON {os.environ["RWKV_JIT_ON"]} RWKV_CUDA_ON {os.environ["RWKV_CUDA_ON"]} RESCALE_LAYER {self.RESCALE_LAYER}\n')
|
98 |
+
|
99 |
+
args.MODEL_NAME = args.MODEL_NAME.strip()
|
100 |
+
if not args.MODEL_NAME.endswith('.pth'):
|
101 |
+
args.MODEL_NAME += '.pth'
|
102 |
+
prxxx(f'Loading {args.MODEL_NAME} ...')
|
103 |
+
with torch.no_grad():
|
104 |
+
if lora:
|
105 |
+
self.w = lora_merge(base_model=args.MODEL_NAME,lora=lora,
|
106 |
+
lora_alpha=lora_alpha,layer_filter=lora_layer_filter,
|
107 |
+
device=('cuda' if 'cuda' in strategy else 'cpu'))
|
108 |
+
else:
|
109 |
+
self.w = torch.load(args.MODEL_NAME, map_location='cpu') # load model to CPU first
|
110 |
+
gc.collect()
|
111 |
+
w = self.w
|
112 |
+
ALREADY_CONVERTED = False
|
113 |
+
if '_strategy' in w:
|
114 |
+
ALREADY_CONVERTED = True
|
115 |
+
assert convert_and_save_and_exit == None # you should only convert a raw model
|
116 |
+
prxxx(f"Converted model: strategy {w['_strategy']}, version {w['_version']}\n")
|
117 |
+
assert w['_strategy'] == args.strategy_string # if you are using a new strategy, re-convert the model
|
118 |
+
assert float(w['_version']) >= 0.7 # sometimes you should re-convert using latest convert_model.py
|
119 |
+
assert w['_rescale_layer'] == self.RESCALE_LAYER
|
120 |
+
del w['_strategy']
|
121 |
+
del w['_version']
|
122 |
+
del w['_rescale_layer']
|
123 |
+
|
124 |
+
args.n_embd = w['emb.weight'].shape[1]
|
125 |
+
args.n_layer = 0
|
126 |
+
keys = list(w.keys())
|
127 |
+
for x in keys:
|
128 |
+
layer_id = int(x.split('.')[1]) if ('blocks.' in x) else 0
|
129 |
+
args.n_layer = max(args.n_layer, layer_id+1)
|
130 |
+
|
131 |
+
####################### Compute strategy
|
132 |
+
|
133 |
+
s = [x.strip().split(' ') for x in strategy.split('->')]
|
134 |
+
plan = [0] * len(s)
|
135 |
+
stream_i = -1
|
136 |
+
stream_count = 0
|
137 |
+
to_allocate = args.n_layer + 1
|
138 |
+
allocated = 0
|
139 |
+
free_slots = 0
|
140 |
+
for i in range(len(s)):
|
141 |
+
si = s[i]
|
142 |
+
si1 = si[1]
|
143 |
+
if si1.startswith('fp32'): si[1] = [torch.float]
|
144 |
+
elif si1.startswith('fp16'): si[1] = [torch.float16]
|
145 |
+
elif si1.startswith('bf16'): si[1] = [torch.bfloat16]
|
146 |
+
if si1.endswith('i8'): si[1] += [torch.uint8]
|
147 |
+
else: si[1] += [si[1][0]]
|
148 |
+
if len(si) > 2:
|
149 |
+
ss = si[2]
|
150 |
+
assert ss.startswith('*')
|
151 |
+
if ss.endswith('+'):
|
152 |
+
plan[i] = int(ss[1:-1])
|
153 |
+
stream_i = i
|
154 |
+
else:
|
155 |
+
plan[i] = int(ss[1:])
|
156 |
+
allocated += plan[i]
|
157 |
+
if allocated >= to_allocate:
|
158 |
+
plan[i] += to_allocate - allocated
|
159 |
+
break
|
160 |
+
else:
|
161 |
+
free_slots += 1
|
162 |
+
if stream_i < 0:
|
163 |
+
if free_slots > 0 and to_allocate > allocated:
|
164 |
+
for i in range(len(s)):
|
165 |
+
if plan[i] == 0:
|
166 |
+
plan[i] = (to_allocate - allocated) // free_slots
|
167 |
+
allocated += plan[i]
|
168 |
+
free_slots -= 1
|
169 |
+
if to_allocate > allocated:
|
170 |
+
plan[len(s)-1] += to_allocate - allocated
|
171 |
+
else:
|
172 |
+
if to_allocate > allocated:
|
173 |
+
stream_count = to_allocate - allocated
|
174 |
+
plan[stream_i] += stream_count
|
175 |
+
prxxx(f'Strategy: (total {args.n_layer}+1={args.n_layer+1} layers)')
|
176 |
+
for i in range(len(s)):
|
177 |
+
ss = s[i]
|
178 |
+
if i != stream_i:
|
179 |
+
prxxx(f'* {ss[0]} {str(ss[1]).replace("torch.","")}, store {plan[i]} layers')
|
180 |
+
else:
|
181 |
+
prxxx(f'* {ss[0]} {str(ss[1]).replace("torch.","")}, store {plan[i]-stream_count} layers, stream {stream_count} layers')
|
182 |
+
plan[i] += (0 if i == 0 else plan[i-1])
|
183 |
+
self.strategy = [None] * (args.n_layer + 1)
|
184 |
+
strategy = self.strategy
|
185 |
+
for n in range(args.n_layer + 1):
|
186 |
+
for i in range(len(s)):
|
187 |
+
if n < plan[i]:
|
188 |
+
strategy[n] = types.SimpleNamespace()
|
189 |
+
strategy[n].device = s[i][0]
|
190 |
+
strategy[n].atype = s[i][1][0]
|
191 |
+
strategy[n].wtype = s[i][1][1]
|
192 |
+
strategy[n].stream = False
|
193 |
+
if i == stream_i and n >= (plan[i] - stream_count):
|
194 |
+
strategy[n].stream = True
|
195 |
+
break
|
196 |
+
prxxx(f"{n}-{strategy[n].device}-{str(strategy[n].atype).replace('torch.','')}-{str(strategy[n].wtype).replace('torch.','')}{'-stream' if strategy[n].stream else ''}",end=' ')
|
197 |
+
prxxx()
|
198 |
+
|
199 |
+
####################### Load weights to self.w
|
200 |
+
|
201 |
+
if not ALREADY_CONVERTED:
|
202 |
+
try: # precompute embedding
|
203 |
+
w['emb.weight'] = F.layer_norm(w['emb.weight'], (args.n_embd,), weight=w['blocks.0.ln0.weight'], bias=w['blocks.0.ln0.bias'])
|
204 |
+
except:
|
205 |
+
w['emb.weight'] = F.layer_norm(w['emb.weight'].float(), (args.n_embd,), weight=w['blocks.0.ln0.weight'].float(), bias=w['blocks.0.ln0.bias'].float())
|
206 |
+
del w['blocks.0.ln0.weight']
|
207 |
+
del w['blocks.0.ln0.bias']
|
208 |
+
|
209 |
+
print_need_newline = False
|
210 |
+
keys = list(w.keys())
|
211 |
+
for x in keys:
|
212 |
+
w[x].requires_grad = False
|
213 |
+
layer_id = int(x.split('.')[1]) if ('blocks.' in x) else 0
|
214 |
+
if ('ln_out.' in x) or ('head.' in x):
|
215 |
+
layer_id = args.n_layer
|
216 |
+
dd = strategy[layer_id]
|
217 |
+
DEVICE = dd.device
|
218 |
+
ATYPE = dd.atype
|
219 |
+
WTYPE = dd.wtype
|
220 |
+
|
221 |
+
if not ALREADY_CONVERTED:
|
222 |
+
if self.RESCALE_LAYER > 0:
|
223 |
+
if 'att.output.weight' in x:
|
224 |
+
w[x] = w[x] / (2 ** int(layer_id // self.RESCALE_LAYER))
|
225 |
+
if 'ffn.value.weight' in x:
|
226 |
+
w[x] = w[x] / (2 ** int(layer_id // self.RESCALE_LAYER))
|
227 |
+
|
228 |
+
if '.time_' in x:
|
229 |
+
w[x] = w[x].squeeze()
|
230 |
+
if 'key.weight' in x or 'value.weight' in x or 'receptance.weight' in x or 'output.weight' in x or 'head.weight' in x:
|
231 |
+
w[x] = w[x].t()
|
232 |
+
|
233 |
+
if '.time_decay' in x: # need fp32 for this
|
234 |
+
w[x] = -torch.exp(w[x].float())
|
235 |
+
elif '.time_first' in x: # need fp32 for this
|
236 |
+
w[x] = w[x].float()
|
237 |
+
else:
|
238 |
+
if (len(w[x].shape) == 2) and ('emb' not in x):
|
239 |
+
if WTYPE != torch.uint8:
|
240 |
+
w[x] = w[x].to(dtype=WTYPE)
|
241 |
+
else:
|
242 |
+
w[x] = w[x].float()
|
243 |
+
|
244 |
+
if w[x].shape[0] > w[x].shape[1]:
|
245 |
+
w[x+'_my'] = torch.amin(w[x], dim=1).unsqueeze(1)
|
246 |
+
w[x] = w[x] - w[x+'_my']
|
247 |
+
w[x+'_mx'] = torch.amin(w[x], dim=0)
|
248 |
+
w[x] = w[x] - w[x+'_mx']
|
249 |
+
w[x+'_rx'] = torch.amax(w[x], dim=0)
|
250 |
+
w[x] = w[x] / w[x+'_rx']
|
251 |
+
w[x+'_ry'] = torch.amax(w[x], dim=1).unsqueeze(1)
|
252 |
+
w[x] = w[x] / w[x+'_ry']
|
253 |
+
else:
|
254 |
+
w[x+'_mx'] = torch.amin(w[x], dim=0)
|
255 |
+
w[x] = w[x] - w[x+'_mx']
|
256 |
+
w[x+'_my'] = torch.amin(w[x], dim=1).unsqueeze(1)
|
257 |
+
w[x] = w[x] - w[x+'_my']
|
258 |
+
w[x+'_rx'] = torch.amax(w[x], dim=0)
|
259 |
+
w[x] = w[x] / w[x+'_rx']
|
260 |
+
w[x+'_ry'] = torch.amax(w[x], dim=1).unsqueeze(1)
|
261 |
+
w[x] = w[x] / w[x+'_ry']
|
262 |
+
|
263 |
+
w[x] = torch.clip(torch.floor(w[x] * 256), min=0, max=255).to(dtype=torch.uint8)
|
264 |
+
w[x+'_mx'] = w[x+'_mx'].to(dtype=ATYPE).contiguous()
|
265 |
+
w[x+'_rx'] = (w[x+'_rx'] / 16).to(dtype=ATYPE).contiguous()
|
266 |
+
w[x+'_my'] = w[x+'_my'].to(dtype=ATYPE).contiguous()
|
267 |
+
w[x+'_ry'] = (w[x+'_ry'] / 16).to(dtype=ATYPE).contiguous()
|
268 |
+
else:
|
269 |
+
w[x] = w[x].to(dtype=ATYPE)
|
270 |
+
|
271 |
+
if convert_and_save_and_exit == None:
|
272 |
+
if 'emb.' in x:
|
273 |
+
w[x] = w[x].contiguous()
|
274 |
+
elif (dd.stream) and (x.endswith('key.weight') or x.endswith('value.weight') or x.endswith('receptance.weight') or x.endswith('output.weight')):
|
275 |
+
try:
|
276 |
+
w[x] = w[x].contiguous().pin_memory() # if you see "CUDA error: out of memory" here, that's out of CPU RAM, not VRAM. Get more RAM :)
|
277 |
+
except:
|
278 |
+
print('Note: You are running out of RAM. Get more CPU RAM. Now this will run much slower.')
|
279 |
+
elif DEVICE != 'cpu':
|
280 |
+
w[x] = w[x].to(device=DEVICE).contiguous()
|
281 |
+
|
282 |
+
if (dd.stream) or (DEVICE != 'cpu'):
|
283 |
+
try:
|
284 |
+
w[x+'_mx'] = w[x+'_mx'].to(device=DEVICE).contiguous()
|
285 |
+
w[x+'_rx'] = w[x+'_rx'].to(device=DEVICE).contiguous()
|
286 |
+
w[x+'_my'] = w[x+'_my'].to(device=DEVICE).contiguous()
|
287 |
+
w[x+'_ry'] = w[x+'_ry'].to(device=DEVICE).contiguous()
|
288 |
+
except:
|
289 |
+
pass
|
290 |
+
|
291 |
+
if 'ffn.value.weight' in x:
|
292 |
+
gc.collect()
|
293 |
+
if 'cuda' in args.strategy_string:
|
294 |
+
torch.cuda.empty_cache()
|
295 |
+
|
296 |
+
shape = [i for i in w[x].shape if i != 1]
|
297 |
+
if len(shape) > 1:
|
298 |
+
shape = f" {str(shape[0]).rjust(5)} {str(shape[1]).rjust(5)}"
|
299 |
+
else:
|
300 |
+
shape = f" {str(shape[0]).rjust(5)} "
|
301 |
+
if layer_id == 0 or layer_id >= args.n_layer-1:
|
302 |
+
if print_need_newline:
|
303 |
+
prxxx('\n', end = '')
|
304 |
+
print_need_newline = False
|
305 |
+
dt = str(w[x].dtype).replace('torch.', '')
|
306 |
+
dt = dt.replace('float32', 'f32').replace('bfloat16', 'bf16').replace('float16', 'f16').replace('uint8', 'i8')
|
307 |
+
prxxx(x.ljust(32), dt.rjust(4), str(w[x].device).rjust(8), shape, ' (pinned)' if w[x].is_pinned() else '')
|
308 |
+
else:
|
309 |
+
print_need_newline = True
|
310 |
+
prxxx('.', end = '', flush = True)
|
311 |
+
|
312 |
+
if convert_and_save_and_exit:
|
313 |
+
w['_strategy'] = args.strategy_string
|
314 |
+
w['_rescale_layer'] = self.RESCALE_LAYER
|
315 |
+
w['_version'] = '0.7'
|
316 |
+
if not convert_and_save_and_exit.endswith('.pth'):
|
317 |
+
convert_and_save_and_exit += '.pth'
|
318 |
+
prxxx(f'Saving to {convert_and_save_and_exit}...')
|
319 |
+
torch.save(w, convert_and_save_and_exit)
|
320 |
+
prxxx(f'Converted and saved. Now this will exit.')
|
321 |
+
exit(0)
|
322 |
+
|
323 |
+
gc.collect()
|
324 |
+
if 'cuda' in args.strategy_string:
|
325 |
+
torch.cuda.empty_cache()
|