import gradio as gr from llama_cpp import Llama LLM = Llama.from_pretrained( repo_id="mradermacher/ZEUS-8B-V2-i1-GGUF", filename="*Q4_K_M.gguf", chat_format="chatml", verbose=False ) def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in LLM.create_chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): if "choices" not in message: continue token = message["choices"][0]["delta"] if "content" not in token: continue token = token["content"] if token.strip() == "|": break response += token yield response if __name__ == "__main__": demo = gr.ChatInterface( fn=respond, type="messages", additional_inputs=[ gr.Textbox(value="You are a friendly assistant.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) demo.launch()