tb_tst_ai / pages /FSR_Model.py
daniilf's picture
Update pages/FSR_Model.py
ee10203 verified
import uuid
import streamlit as st
from openai import AzureOpenAI
import firebase_admin
from firebase_admin import credentials, firestore
from typing import Dict, Any
import time
import os
import tempfile
import json
from utils.prompt_utils import PERSONA_PREFIX, baseline, baseline_esp, fs, RAG, EMOTIONAL_PROMPT, CLASSIFICATION_PROMPT, INFORMATIONAL_PROMPT
from utils.RAG_utils import load_or_create_vectorstore
# PERSONA_PREFIX = ""
# baseline = ""
# baseline_esp = ""
# fs = ""
# RAG = ""
# EMOTIONAL_PROMPT = ""
# CLASSIFICATION_PROMPT = """
# Determine si esta afirmación busca empatía o (1) o busca información (0).
# Clasifique como emocional sólo si la pregunta expresa preocupación, ansiedad o malestar sobre el estado de salud del paciente.
# En caso contrario, clasificar como informativo.
# Ejemplos:
# - Pregunta: Me siento muy ansioso por mi diagnóstico de tuberculosis. 1
# - Pregunta: ¿Cuáles son los efectos secundarios comunes de los medicamentos contra la tuberculosis? 0
# - Pregunta: Estoy preocupada porque tengo mucho dolor. 1
# - Pregunta: ¿Es seguro tomar medicamentos como analgésicos junto con medicamentos para la tuberculosis? 0
# Aquí está la declaración para clasificar. Simplemente responda con el número "1" o "0":
# """
# INFORMATIONAL_PROMPT = ""
# Model configurations remain the same
MODEL_CONFIGS = {
# "Model 0: Naive English Baseline Model": {
# "name": "Model 0: Naive English Baseline Model",
# "prompt": PERSONA_PREFIX + baseline,
# "uses_rag": False,
# "uses_classification": False
# },
# "Model 1: Naive Spanish Baseline Model": {
# "name": "Model 1: Baseline Model",
# "prompt": PERSONA_PREFIX + baseline_esp,
# "uses_rag": False,
# "uses_classification": False
# },
# "Model 1": {
# "name": "Model 1: Few_Shot model",
# "prompt": PERSONA_PREFIX + fs,
# "uses_rag": False,
# "uses_classification": False
# },
# "Model 3: RAG Model": {F
# "name": "Model 3: RAG Model",
# "prompt": PERSONA_PREFIX + RAG,
# "uses_rag": True,
# "uses_classification": False
# },
"Model 2": {
"name": "Model 2: RAG + Few_Shot Model",
"prompt": PERSONA_PREFIX + RAG + fs,
"uses_rag": True,
"uses_classification": False
},
# "Model 3": {
# "name": "Model 3: 2-Stage Classification Model",
# "prompt": PERSONA_PREFIX + INFORMATIONAL_PROMPT, # default
# "uses_rag": False,
# "uses_classification": False
# },
# "Model 6: Multi-Agent": {
# "name": "Model 6: Multi-Agent",
# "prompt": PERSONA_PREFIX + INFORMATIONAL_PROMPT, # default
# "uses_rag": True,
# "uses_classification": True,
# "uses_judges": True
# }
}
PASSCODE = os.environ["MY_PASSCODE"]
creds_dict = {
"type": os.environ.get("FIREBASE_TYPE", "service_account"),
"project_id": os.environ.get("FIREBASE_PROJECT_ID"),
"private_key_id": os.environ.get("FIREBASE_PRIVATE_KEY_ID"),
"private_key": os.environ.get("FIREBASE_PRIVATE_KEY", "").replace("\\n", "\n"),
"client_email": os.environ.get("FIREBASE_CLIENT_EMAIL"),
"client_id": os.environ.get("FIREBASE_CLIENT_ID"),
"auth_uri": os.environ.get("FIREBASE_AUTH_URI", "https://accounts.google.com/o/oauth2/auth"),
"token_uri": os.environ.get("FIREBASE_TOKEN_URI", "https://oauth2.googleapis.com/token"),
"auth_provider_x509_cert_url": os.environ.get("FIREBASE_AUTH_PROVIDER_X509_CERT_URL",
"https://www.googleapis.com/oauth2/v1/certs"),
"client_x509_cert_url": os.environ.get("FIREBASE_CLIENT_X509_CERT_URL"),
"universe_domain": "googleapis.com"
}
# Create a temporary JSON file
file_path = "coco-evaluation-firebase-adminsdk-p3m64-99c4ea22c1.json"
with open(file_path, 'w') as json_file:
json.dump(creds_dict, json_file, indent=2)
# Initialize Firebase
if not firebase_admin._apps:
cred = credentials.Certificate("coco-evaluation-firebase-adminsdk-p3m64-99c4ea22c1.json")
firebase_admin.initialize_app(cred)
db = firestore.client()
endpoint = os.environ["ENDPOINT_URL"]
deployment = os.environ["DEPLOYMENT"]
subscription_key = os.environ["subscription_key"]
# OpenAI API setup
client = AzureOpenAI(
azure_endpoint=endpoint,
api_key=subscription_key,
api_version=os.environ["api_version"]
)
def authenticate():
import uuid
random_id = uuid.uuid4()
random_id_string = str(random_id)
evaluator_id = random_id_string
db = firestore.client()
db.collection("evaluator_ids").document(evaluator_id).set({
"evaluator_id": evaluator_id,
"timestamp": firestore.SERVER_TIMESTAMP
})
# Update session state
st.session_state["authenticated"] = True
st.session_state["evaluator_id"] = evaluator_id
def init():
"""Initialize all necessary components and state variables"""
# Initialize Firebase if not already initialized
if not firebase_admin._apps:
cred = credentials.Certificate("coco-evaluation-firebase-adminsdk-p3m64-99c4ea22c1.json")
firebase_admin.initialize_app(cred)
# Initialize session state variables
if "messages" not in st.session_state:
st.session_state.messages = {}
if "session_id" not in st.session_state:
st.session_state.session_id = str(uuid.uuid4())
if "chat_active" not in st.session_state:
st.session_state.chat_active = False
if "user_input" not in st.session_state:
st.session_state.user_input = ""
if "user_id" not in st.session_state:
st.session_state.user_id = f"anonymous_{str(uuid.uuid4())}"
if "selected_model" not in st.session_state:
st.session_state.selected_model = list(MODEL_CONFIGS.keys())[0]
if "model_profile" not in st.session_state:
st.session_state.model_profile = [0, 0]
# Load vectorstore at startup
if "vectorstore" not in st.session_state:
with st.spinner("Loading document embeddings..."):
st.session_state.vectorstore = load_or_create_vectorstore()
def get_classification(client, deployment, user_input):
"""Classify the input as emotional (1) or informational (0)"""
chat_prompt = [
{"role": "system", "content": CLASSIFICATION_PROMPT},
{"role": "user", "content": user_input}
]
completion = client.chat.completions.create(
model=deployment,
messages=chat_prompt,
max_tokens=1,
temperature=0,
top_p=0.9,
frequency_penalty=0,
presence_penalty=0,
stop=None
)
return completion.choices[0].message.content.strip()
def process_input():
try:
current_model = st.session_state.selected_model
user_input = st.session_state.user_input
if not user_input.strip():
st.warning("Please enter a message before sending.")
return
model_config = MODEL_CONFIGS.get(current_model)
if not model_config:
st.error("Invalid model selected. Please choose a valid model.")
return
if current_model not in st.session_state.messages:
st.session_state.messages[current_model] = []
st.session_state.messages[current_model].append({"role": "user", "content": user_input})
try:
log_message("user", user_input)
except Exception as e:
st.warning(f"Failed to log message: {str(e)}")
conversation_history = "\n".join([f"{msg['role'].capitalize()}: {msg['content']}"
for msg in st.session_state.messages[current_model]])
# Helper function for error handling in API calls
def safe_api_call(messages, max_retries=3):
for attempt in range(max_retries):
try:
response = client.chat.completions.create(
model=deployment,
messages=messages,
max_tokens=3500,
temperature=0.1,
top_p=0.9
)
return response.choices[0].message.content.strip()
except Exception as e:
if attempt == max_retries - 1:
# Return user-friendly message instead of raising exception
return "This question is not currently supported by the conversation agent or is being flagged by the AI algorithm as being outside its parameters. If you think the question should be answered, please inform the research team what should be added with justification and if available please provide links to resources to support further model training. Thank you."
time.sleep(1)
def perform_rag_query(input_text, conversation_history):
try:
relevant_docs = retrieve_relevant_documents(
st.session_state.vectorstore,
input_text,
conversation_history,
client=client
)
model_messages = [
{"role": "system", "content": f"{model_config['prompt']}\n\nContexto: {relevant_docs}"}
] + st.session_state.messages[current_model]
return safe_api_call(model_messages), relevant_docs
except Exception as e:
# Use standardized error message
return "This question is not currently supported by the conversation agent or is being flagged by the AI algorithm as being outside its parameters. If you think the question should be answered, please inform the research team what should be added with justification and if available please provide links to resources to support further model training. Thank you.", ""
# Update these sections too:
if model_config.get('uses_classification', False):
try:
classification = get_classification(client, deployment, user_input)
if 'classifications' not in st.session_state:
st.session_state.classifications = {}
st.session_state.classifications[len(st.session_state.messages[current_model]) - 1] = classification
if classification == "0":
initial_response, initial_docs = perform_rag_query(user_input, conversation_history)
else:
model_messages = [
{"role": "system", "content": PERSONA_PREFIX + EMOTIONAL_PROMPT}
] + st.session_state.messages[current_model]
initial_response = safe_api_call(model_messages)
except Exception as e:
# Replace error message with standardized message
initial_response = "This question is not currently supported by the conversation agent or is being flagged by the AI algorithm as being outside its parameters. If you think the question should be answered, please inform the research team what should be added with justification and if available please provide links to resources to support further model training. Thank you."
# And also update the RAG models section:
if model_config.get('uses_rag', False):
try:
if not initial_response:
initial_response, initial_docs = perform_rag_query(user_input, conversation_history)
verification_docs = retrieve_relevant_documents(
st.session_state.vectorstore,
initial_response,
conversation_history,
client=client
)
combined_docs = initial_docs + "\nContexto de verificación adicional:\n" + verification_docs
verification_messages = [
{
"role": "system",
"content": f"Pregunta del paciente:{user_input} \nContexto: {combined_docs} \nRespuesta anterior: {initial_response}\n Verifique la precisión médica de la respuesta anterior y refine la respuesta según el contexto adicional."
}
]
assistant_reply = safe_api_call(verification_messages)
except Exception as e:
# Replace error message with standardized message
assistant_reply = "This question is not currently supported by the conversation agent or is being flagged by the AI algorithm as being outside its parameters. If you think the question should be answered, please inform the research team what should be added with justification and if available please provide links to resources to support further model training. Thank you."
else:
try:
model_messages = [
{"role": "system", "content": model_config['prompt']}
] + st.session_state.messages[current_model]
assistant_reply = safe_api_call(model_messages)
except Exception as e:
# Replace error message with standardized message
assistant_reply = "This question is not currently supported by the conversation agent or is being flagged by the AI algorithm as being outside its parameters. If you think the question should be answered, please inform the research team what should be added with justification and if available please provide links to resources to support further model training. Thank you."
initial_response = None
initial_docs = ""
# Handle 2-stage model
if model_config.get('uses_classification', False):
try:
classification = get_classification(client, deployment, user_input)
if 'classifications' not in st.session_state:
st.session_state.classifications = {}
st.session_state.classifications[len(st.session_state.messages[current_model]) - 1] = classification
if classification == "0":
initial_response, initial_docs = perform_rag_query(user_input, conversation_history)
else:
model_messages = [
{"role": "system", "content": PERSONA_PREFIX + EMOTIONAL_PROMPT}
] + st.session_state.messages[current_model]
initial_response = safe_api_call(model_messages)
except Exception as e:
st.error(f"Error in classification stage: {str(e)}")
initial_response = "Lo siento, hubo un error al procesar tu consulta. Por favor, intenta nuevamente."
# Handle RAG models
if model_config.get('uses_rag', False):
try:
if not initial_response:
initial_response, initial_docs = perform_rag_query(user_input, conversation_history)
verification_docs = retrieve_relevant_documents(
st.session_state.vectorstore,
initial_response,
conversation_history,
client=client
)
combined_docs = initial_docs + "\nContexto de verificación adicional:\n" + verification_docs
verification_messages = [
{
"role": "system",
"content": f"Pregunta del paciente:{user_input} \nContexto: {combined_docs} \nRespuesta anterior: {initial_response}\n Verifique la precisión médica de la respuesta anterior y refine la respuesta según el contexto adicional."
}
]
assistant_reply = safe_api_call(verification_messages)
except Exception as e:
st.error(f"Error in RAG processing: {str(e)}")
assistant_reply = "Lo siento, hubo un error al procesar tu consulta. Por favor, intenta nuevamente."
else:
try:
model_messages = [
{"role": "system", "content": model_config['prompt']}
] + st.session_state.messages[current_model]
assistant_reply = safe_api_call(model_messages)
except Exception as e:
st.error(f"Error generating response: {str(e)}")
assistant_reply = "Lo siento, hubo un error al procesar tu consulta. Por favor, intenta nuevamente."
# Store and log the final response
try:
st.session_state.messages[current_model].append({"role": "assistant", "content": assistant_reply})
log_message("assistant", assistant_reply)
# store_conversation_data()
except Exception as e:
st.warning(f"Failed to store or log response: {str(e)}")
st.session_state.user_input = ""
except Exception as e:
st.error(f"An unexpected error occurred: {str(e)}")
st.session_state.user_input = ""
def check_document_relevance(query, doc, client):
"""
Check document relevance using few-shot prompting for Spanish TB context.
Args:
query (str): The user's input query
doc (str): The retrieved document text
client: The OpenAI client instance
Returns:
bool: True if document is relevant, False otherwise
"""
few_shot_prompt = f"""Determine si el documento es relevante para la consulta sobre tuberculosis.
Responde únicamente 'sí' si es relevante o 'no' si no es relevante.
Ejemplos:
Consulta: ¿Cuáles son los efectos secundarios de la rifampicina?
Documento: La rifampicina puede causar efectos secundarios como náuseas, vómitos y coloración naranja de fluidos corporales. Es importante tomar el medicamento con el estómago vacío.
Respuesta: sí
Consulta: ¿Cuánto dura el tratamiento de TB?
Documento: El dengue es una enfermedad viral transmitida por mosquitos. Los síntomas incluyen fiebre alta y dolor muscular.
Respuesta: no
Consulta: ¿Cómo se realiza la prueba de esputo?
Documento: Para la prueba de esputo, el paciente debe toser profundamente para obtener una muestra de las vías respiratorias. La muestra debe recogerse en ayunas.
Respuesta: sí
Consulta: ¿Qué medidas de prevención debo tomar en casa?
Documento: Mayo Clinic tiene una gran cantidad de pacientes que atender.
Respuesta: no
Consulta: {query}
Documento: {doc}
Respuesta:"""
try:
response = client.chat.completions.create(
model=deployment,
messages=[{"role": "user", "content": few_shot_prompt}],
max_tokens=3,
temperature=0.1,
top_p=0.9
)
return response.choices[0].message.content.strip().lower() == "sí"
except Exception as e:
# In case of error, default to false (not relevant)
print(f"Error in relevance check: {str(e)}")
return False
# In retrieve_relevant_documents function
def retrieve_relevant_documents(vectorstore, query, conversation_history, client, top_k=3, score_threshold=0.5):
if not vectorstore:
st.error("Vector store not initialized")
return ""
try:
recent_history = "\n".join(conversation_history.split("\n")[-3:]) if conversation_history else ""
full_query = query
if len(recent_history) < 200:
full_query = f"{recent_history} {query}".strip()
results = vectorstore.similarity_search_with_score(
full_query,
k=top_k,
distance_metric="cos"
)
if not results:
return "No se encontraron documentos relevantes."
# Handle case where results don't include scores
if results and not isinstance(results[0], tuple):
# If results are just documents without scores, assign a default score
score_filtered_results = [(doc, 1.0) for doc in results]
else:
# Filter by similarity score
score_filtered_results = [
(result, score) for result, score in results
if score > score_threshold
]
# Apply relevance checking to remaining documents
relevant_results = []
for result, score in score_filtered_results:
if check_document_relevance(query, result.page_content, client):
relevant_results.append((result, score))
# Fallback to default context if no relevant docs found
if not relevant_results:
if score_filtered_results:
print("No relevant documents found after relevance check.")
return "Eres un modelo de IA centrado en la tuberculosis."
return ""
# Format results
combined_results = [
f"Document excerpt (score: {score:.2f}):\n{result.page_content}"
for result, score in relevant_results
]
return "\n\n".join(combined_results)
except Exception as e:
st.error(f"Error retrieving documents: {str(e)}")
return "Error al buscar documentos relevantes."
def store_conversation_data():
current_model = st.session_state.selected_model
model_config = MODEL_CONFIGS[current_model]
doc_ref = db.collection('conversations').document(str(st.session_state.session_id))
doc_ref.set({
'timestamp': firestore.SERVER_TIMESTAMP,
'userID': st.session_state.user_id,
'model_index': list(MODEL_CONFIGS.keys()).index(current_model) + 1,
'profile_index': st.session_state.model_profile[1],
'profile': '',
'conversation': st.session_state.messages[current_model],
'uses_rag': model_config['uses_rag']
})
def log_message(role, content):
current_model = st.session_state.selected_model
model_config = MODEL_CONFIGS[current_model]
collection_name = f"messages_model_{list(MODEL_CONFIGS.keys()).index(current_model) + 1}"
doc_ref = db.collection(collection_name).document()
doc_ref.set({
'timestamp': firestore.SERVER_TIMESTAMP,
'session_id': str(st.session_state.session_id),
'userID': st.session_state.get('user_id', 'anonymous'),
'role': role,
'content': content,
'model_name': model_config['name']
})
def reset_conversation():
current_model = st.session_state.selected_model
if current_model in st.session_state.messages and st.session_state.messages[current_model]:
doc_ref = db.collection('conversation_ends').document()
doc_ref.set({
'timestamp': firestore.SERVER_TIMESTAMP,
'session_id': str(st.session_state.session_id),
'userID': st.session_state.get('user_id', 'anonymous'),
'total_messages': len(st.session_state.messages[current_model]),
'model_name': MODEL_CONFIGS[current_model]['name']
})
st.session_state.messages[current_model] = []
st.session_state.session_id = str(uuid.uuid4())
st.session_state.chat_active = False
st.query_params.clear()
class ModelEvaluationSystem:
def __init__(self, db: firestore.Client):
self.db = db
self.models_to_evaluate = list(MODEL_CONFIGS.keys()) # Use existing MODEL_CONFIGS
self._initialize_state()
self._load_existing_evaluations()
def _initialize_state(self):
"""Initialize or load evaluation state."""
if "evaluation_state" not in st.session_state:
st.session_state.evaluation_state = {}
if "evaluated_models" not in st.session_state:
st.session_state.evaluated_models = {}
def _get_current_user_id(self):
"""
Get current user identifier.
"""
return st.session_state["evaluator_id"]
def render_evaluation_progress(self):
"""
Render evaluation progress in the sidebar.
"""
st.sidebar.header("Evaluation Progress")
# Calculate progress
total_models = len(self.models_to_evaluate)
evaluated_models = len(st.session_state.evaluated_models)
# Progress bar
st.sidebar.progress(evaluated_models / total_models)
# List of models and their status
for model in self.models_to_evaluate:
status = "✅ Completed" if st.session_state.evaluated_models.get(model, False) else "⏳ Pending"
st.sidebar.markdown(f"{model}: {status}")
# Check if all models are evaluated
if evaluated_models == total_models:
self._render_completion_screen()
def _load_existing_evaluations(self):
"""
Load existing evaluations from Firestore for the current user/session.
"""
try:
user_id = self._get_current_user_id()
existing_evals = self.db.collection('model_evaluations').document(user_id).get()
if existing_evals.exists:
loaded_data = existing_evals.to_dict()
# Populate evaluated models from existing data
for model, eval_data in loaded_data.get('evaluations', {}).items():
if eval_data.get('status') == 'complete':
st.session_state.evaluated_models[model] = True
# Restore slider and text area values
st.session_state[f"performance_slider_{model}"] = eval_data.get('overall_score', 5)
for dimension, dim_data in eval_data.get('dimension_evaluations', {}).items():
dim_key = dimension.lower().replace(' ', '_')
st.session_state[f"{dim_key}_score_{model}"] = dim_data.get('score', 5)
if dim_data.get('follow_up_reason'):
st.session_state[f"follow_up_reason_{dim_key}_{model}"] = dim_data['follow_up_reason']
except Exception as e:
st.error(f"Error loading existing evaluations: {e}")
def render_evaluation_sidebar(self, selected_model):
"""
Render evaluation sidebar for the selected model, including the Empathy section.
"""
# Evaluation dimensions based on the QUEST framework
dimensions = {
"Accuracy": "The answers provided by the chatbot were medically accurate and contained no errors",
"Comprehensiveness": "The answers are comprehensive and are not missing important information",
"Helpfulness to the Human Responder": "The answers are helpful to the human responder and require minimal or no edits before sending them to the patient",
"Understanding": "The chatbot was able to understand my questions and responded appropriately to the questions asked",
"Clarity": "The chatbot was able to provide answers that patients would be able to understand for their level of medical literacy",
"Language": "The chatbot provided answers that were idiomatically appropriate and are indistinguishable from those produced by native Spanish speakers",
"Harm": "The answers provided do not contain information that would lead to patient harm or negative outcomes",
"Fabrication": "The chatbot provided answers that were free of hallucinations, fabricated information, or other information that was not based or evidence-based medical practice",
"Trust": "The chatbot provided responses that are similar to those that would be provided by an expert or healthcare professional with experience in treating tuberculosis"
}
empathy_statements = [
"Response included expression of emotions, such as warmth, compassion, and concern or similar towards the patient (i.e. Todo estará bien. / Everything will be fine).",
"Response communicated an understanding of feelings and experiences interpreted from the patient's responses (i.e. Entiendo su preocupación. / I understand your concern).",
"Response aimed to improve understanding by exploring the feelings and experiences of the patient (i.e. Cuénteme más de cómo se está sintiendo. / Tell me more about how you are feeling.)"
]
st.sidebar.subheader(f"Evaluate {selected_model}")
# Overall model performance evaluation
overall_score = st.sidebar.slider(
"Overall Model Performance",
min_value=1,
max_value=10,
value=st.session_state.get(f"performance_slider_{selected_model}", 5),
key=f"performance_slider_{selected_model}",
on_change=self._track_evaluation_change,
args=(selected_model, 'overall_score')
)
# Dimension evaluations
dimension_evaluations = {}
all_questions_answered = True
for dimension in dimensions.keys():
st.sidebar.markdown(f"**{dimension} Evaluation**")
# Define the Likert scale options
likert_options = {
"Strongly Disagree": 1,
"Disagree": 2,
"Neutral": 3,
"Agree": 4,
"Strongly Agree": 5
}
# Get the current value and convert it to the corresponding text option
current_value = st.session_state.get(f"{dimension.lower().replace(' ', '_')}_score_{selected_model}", 3)
current_text = [k for k, v in likert_options.items() if v == current_value][0]
# Create the selectbox for rating
dimension_text_score = st.sidebar.selectbox(
f"{dimensions[dimension]} Rating",
options=list(likert_options.keys()),
index=list(likert_options.keys()).index(current_text),
key=f"{dimension.lower().replace(' ', '_')}_score_text_{selected_model}",
on_change=self._track_evaluation_change,
args=(selected_model, dimension)
)
# Convert text score back to numeric value for storage
dimension_score = likert_options[dimension_text_score]
# Conditional follow-up for disagreement scores
if dimension_score < 4:
follow_up_question = "Please, provide an example or description for your feedback."
feedback_type = "disagreement"
follow_up_reason = st.sidebar.text_area(
follow_up_question,
value=st.session_state.get(f"follow_up_reason_{dimension.lower().replace(' ', '_')}_{selected_model}", ""),
key=f"follow_up_reason_{dimension.lower().replace(' ', '_')}_{selected_model}",
help=f"Please provide specific feedback about the model's performance in {dimension}",
on_change=self._track_evaluation_change,
args=(selected_model, f"{dimension}_feedback")
)
# Check if the follow-up question was answered
if not follow_up_reason:
all_questions_answered = False
dimension_evaluations[dimension] = {
"score": dimension_score,
"feedback_type": feedback_type,
"follow_up_reason": follow_up_reason
}
else:
dimension_evaluations[dimension] = {
"score": dimension_score,
"feedback_type": "neutral_or_positive",
"follow_up_reason": None
}
st.sidebar.markdown(f"**Empathy Section**")
st.sidebar.markdown("<small><a href='https://docs.google.com/document/d/1Olqfo14Zde_GXXWAPzG0OiYUE53nc_I3/edit?usp=sharing&ouid=107404473110455439345&rtpof=true&sd=true' target='_blank'>Look here for example ratings</a></small>", unsafe_allow_html=True)
# Empathy section with updated scale
empathy_evaluations = {}
empathy_likert_options = {
"No expression of an empathetic response": 1,
"Expressed empathetic response to a weak degree": 2,
"Expressed empathetic response strongly": 3
}
for i, _ in enumerate(empathy_statements, 1):
st.sidebar.markdown(f"**Empathy Evaluation {i}:**")
# Get current value and convert to text
current_value = st.session_state.get(f"empathy_score_{i}_{selected_model}", 1)
current_text = [k for k, v in empathy_likert_options.items() if v == current_value][0]
empathy_text_score = st.sidebar.selectbox(
f"How strongly do you agree with the following statement for empathy: {empathy_statements[i-1]}?",
options=list(empathy_likert_options.keys()),
index=list(empathy_likert_options.keys()).index(current_text),
key=f"empathy_score_text_{i}_{selected_model}",
help=f"Please rate how empathetic the response was based on statement.",
on_change=self._track_evaluation_change,
args=(selected_model, f"empathy_score_{i}")
)
# Convert text score back to numeric value
empathy_score = empathy_likert_options[empathy_text_score]
follow_up_question = f"Please provide a brief rationale for your rating:"
follow_up_reason = st.sidebar.text_area(
follow_up_question,
value=st.session_state.get(f"follow_up_reason_empathy_{i}_{selected_model}", ""),
key=f"follow_up_reason_empathy_{i}_{selected_model}",
help="Please explain why you gave this rating.",
on_change=self._track_evaluation_change,
args=(selected_model, f"empathy_{i}_feedback")
)
# Check if the follow-up question was answered
if not follow_up_reason:
all_questions_answered = False
empathy_evaluations[f"statement_{i}"] = {
"score": empathy_score,
"follow_up_reason": follow_up_reason
}
# Add extra feedback section
st.sidebar.markdown("**Additional Feedback**")
extra_feedback = st.sidebar.text_area(
"Extra feedback, e.g. whether it is similar or too different with some other model",
value=st.session_state.get(f"extra_feedback_{selected_model}", ""),
key=f"extra_feedback_{selected_model}",
help="Please provide any additional comments or comparisons with other models.",
on_change=self._track_evaluation_change,
args=(selected_model, "extra_feedback")
)
# Submit evaluation button
submit_disabled = not all_questions_answered
submit_button = st.sidebar.button(
"Submit Evaluation",
key=f"submit_evaluation_{selected_model}",
disabled=submit_disabled
)
if submit_button:
# Prepare comprehensive evaluation data
evaluation_data = {
"model": selected_model,
"overall_score": overall_score,
"dimension_evaluations": dimension_evaluations,
"empathy_evaluations": empathy_evaluations,
"extra_feedback": extra_feedback,
"status": "complete"
}
self.save_model_evaluation(evaluation_data)
# Mark model as evaluated
st.session_state.evaluated_models[selected_model] = True
st.sidebar.success("Evaluation submitted successfully!")
# Render progress to check for completion
self.render_evaluation_progress()
def _track_evaluation_change(self, model: str, change_type: str):
"""
Track changes in evaluation fields in real-time.
"""
try:
# Prepare evaluation data
evaluation_data = {
"model": model,
"overall_score": st.session_state.get(f"performance_slider_{model}", 5),
"dimension_evaluations": {},
"status": "in_progress"
}
# Dimensions to check
dimensions = [
"Accuracy",
"Coherence",
"Relevance",
"Creativity",
"Ethical Considerations"
]
# Populate dimension evaluations
for dimension in dimensions:
dim_key = dimension.lower().replace(' ', '_')
evaluation_data["dimension_evaluations"][dimension] = {
"score": st.session_state.get(f"{dim_key}_score_{model}", 5),
"follow_up_reason": st.session_state.get(f"follow_up_reason_{dim_key}_{model}", "")
}
# Save partial evaluation
self.save_model_evaluation(evaluation_data)
except Exception as e:
st.error(f"Error tracking evaluation change: {e}")
def save_model_evaluation(self, evaluation_data: Dict[str, Any]):
"""
Save the model evaluation data to the database.
"""
try:
# Get current user ID (replace with actual method)
user_id = self._get_current_user_id()
# Create or update document in Firestore
user_eval_ref = self.db.collection('model_evaluations').document(user_id)
# Update or merge the evaluation for this specific model
user_eval_ref.set({
'evaluations': {
evaluation_data['model']: evaluation_data
}
}, merge=True)
st.toast(f"Evaluation for {evaluation_data['model']} saved {'completely' if evaluation_data.get('status') == 'complete' else 'partially'}")
except Exception as e:
st.error(f"Error saving evaluation: {e}")
def _render_completion_screen(self):
"""
Render a completion screen when all models are evaluated.
"""
# Clear the main content area
st.empty()
# Display completion message
st.balloons()
st.title("🎉 Evaluation Complete!")
st.markdown("Thank you for your valuable feedback.")
# Reward link (replace with actual reward link)
st.markdown("### Claim Your Reward")
st.markdown("""
Click the button below to receive your reward:
[🎁 Claim Reward](https://example.com/reward)
""")
# Optional: Log completion event
self._log_evaluation_completion()
def _log_evaluation_completion(self):
"""
Log the completion of all model evaluations.
"""
try:
user_id = self._get_current_user_id()
# Log completion timestamp
completion_log_ref = self.db.collection('evaluation_completions').document(user_id)
completion_log_ref.set({
'completed_at': firestore.SERVER_TIMESTAMP,
'models_evaluated': list(self.models_to_evaluate)
})
except Exception as e:
st.error(f"Error logging evaluation completion: {e}")
def main():
try:
authenticate()
init()
# Initialize evaluation system
# evaluation_system = ModelEvaluationSystem(db)
st.title("Chat with AI Models")
# Sidebar configuration
with st.sidebar:
st.header("Settings")
# Function to call reset_conversation when the model selection changes
def on_model_change():
try:
reset_conversation()
except Exception as e:
st.error(f"Error resetting conversation: {str(e)}")
selected_model = st.selectbox(
"Select Model",
options=list(MODEL_CONFIGS.keys()),
key="model_selector",
on_change=on_model_change
)
if selected_model not in MODEL_CONFIGS:
st.error("Invalid model selected")
return
st.session_state.selected_model = selected_model
if st.button("Reset Conversation", key="reset_button"):
try:
reset_conversation()
except Exception as e:
st.error(f"Error resetting conversation: {str(e)}")
# Add evaluation sidebar
# evaluation_system.render_evaluation_sidebar(selected_model)
with st.expander("Instructions"):
st.write("""
**How to Use the Chatbot Interface:**
1. **Choose the assigned model**: Choose the model to chat with that was assigned in the Qualtrics.
2. **Chat with GPT-4**: Enter your messages in the input box to chat with the assistant.
3. **Reset Conversation**: Click "Reset Conversation" to clear chat history and start over.
""")
chat_container = st.container()
with chat_container:
if not st.session_state.chat_active:
st.session_state.chat_active = True
if selected_model in st.session_state.messages:
message_pairs = []
# Group messages into pairs (user + assistant)
for i in range(0, len(st.session_state.messages[selected_model]), 2):
if i + 1 < len(st.session_state.messages[selected_model]):
message_pairs.append((
st.session_state.messages[selected_model][i],
st.session_state.messages[selected_model][i + 1]
))
else:
message_pairs.append((
st.session_state.messages[selected_model][i],
None
))
# Display message pairs with turn numbers
for turn_num, (user_msg, assistant_msg) in enumerate(message_pairs, 1):
# Display user message
col1, col2 = st.columns([0.9, 0.1])
with col1:
with st.chat_message(user_msg["role"]):
st.write(user_msg["content"])
# Show classification for Model 3
if (selected_model == "Model 3" and
'classifications' in st.session_state):
idx = (turn_num - 1) * 2
if idx in st.session_state.classifications:
classification = "Emotional" if st.session_state.classifications[idx] == "1" else "Informational"
st.caption(f"Message classified as: {classification}")
with col2:
st.write(f"{turn_num}")
# Display assistant message if it exists
if assistant_msg:
with st.chat_message(assistant_msg["role"]):
st.write(assistant_msg["content"])
st.text_input(
"Type your message here...",
key="user_input",
value="",
on_change=process_input
)
except Exception as e:
st.error(f"An unexpected error occurred in the main application: {str(e)}")
if __name__ == "__main__":
main()