File size: 3,423 Bytes
9b5b26a
 
 
 
c19d193
6aae614
a141c5f
8fe992b
9b5b26a
1958357
9b5b26a
4be198e
 
4f560fd
 
791c427
9b5b26a
14153b0
1958357
9b5b26a
1958357
 
 
 
 
 
 
9b5b26a
791c427
1958357
 
9b5b26a
4be198e
 
 
eac5218
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4be198e
9b5b26a
 
 
 
 
 
 
 
 
 
 
 
 
 
8c01ffb
 
4be198e
6aae614
ae7a494
 
 
 
e121372
bf6d34c
 
29ec968
fe328e0
13d500a
8c01ffb
 
861422e
 
9b5b26a
8c01ffb
8fe992b
1958357
 
 
 
4f560fd
8c01ffb
 
 
 
 
861422e
8fe992b
 
9b5b26a
8c01ffb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool
import datetime
import requests
import pytz
import yaml
from tools.final_answer import FinalAnswerTool
from transformers import pipeline

from Gradio_UI import GradioUI
from tools.visit_webpage import VisitWebpageTool

MAX_STEPS = 8
MAX_SEARCH_RESULTS = 5 # should be smaller than MAX_STEPS, as we potentially visit each result, and each visit costs one step

ddg_search_tool = DuckDuckGoSearchTool(max_results=MAX_SEARCH_RESULTS)

@tool
def find_job_websites(job:str, location:str)-> str:
    """A tool that finds websites containing job postings for a job title at a specific location.
    Args:
        job: A string representing the job title.
        location: A string representing the job location.
    Returns:
        A string listing all webpages with jobs fitting the arguments "job" and "location".
        Contains the following per candidate:
        [Website Title](Website URL)
        Description ...\n
    """
    results = ddg_search_tool(f'jobs "{job}" {location}')
    
    return results

visit_webpage = VisitWebpageTool()


## 2. Text Summarizer
#summarizer = pipeline("summarization", model="Falconsai/text_summarization")
#def text_summarizer(text: str) -> str:
#    try:
#        summary = summarizer(text, max_length=1000, min_length=20, do_sample=False)
#        return summary[0]['summary_text']
#    except Exception as e:
#        return f"Error in summarization: {str(e)}"

#@tool
#def visit_webpage_summarization(url:str)-> str:
#    """A tool that visits a webpage at the given url and, reads its content as a markdown string,
#    and extracts relevant information. Use this to browse webpages.
#    Args:
#        url: The url of the webpage to visit.
#    Returns:
#        A summarization containing all relevant information about the webpage's content.
#    """
#    content = visit_webpage(url)
#    
#    return text_summarizer(content)

@tool
def get_current_time_in_timezone(timezone: str) -> str:
    """A tool that fetches the current local time in a specified timezone.
    Args:
        timezone: A string representing a valid timezone (e.g., 'America/New_York').
    """
    try:
        # Create timezone object
        tz = pytz.timezone(timezone)
        # Get current time in that timezone
        local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
        return f"The current local time in {timezone} is: {local_time}"
    except Exception as e:
        return f"Error fetching time for timezone '{timezone}': {str(e)}"



final_answer = FinalAnswerTool()

# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder:
# model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud' 

model = HfApiModel(
max_tokens=2096,
temperature=0.5,
model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded
custom_role_conversions=None,
)


with open("prompts.yaml", 'r') as stream:
    prompt_templates = yaml.safe_load(stream)
    
agent = CodeAgent(
    model=model,
    tools=[
        find_job_websites,
        final_answer
    ],
    max_steps=MAX_STEPS,
    verbosity_level=1,
    grammar=None,
    planning_interval=None,
    name=None,
    description=None,
    prompt_templates=prompt_templates
)


GradioUI(agent).launch()