File size: 26,575 Bytes
d35ea54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5eac09d
 
 
d35ea54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
from gtts import gTTS
import cv2
from pydub import AudioSegment
from tqdm import tqdm
import numpy as np
import pickle
import time
import subprocess,platform
import os
import torch
import io
import soundfile as sf

from models import Wav2Lip
import face_detection
import audio


class Avatar:
  image_frame_num_current = 0
  image_frame_num_goal=0
  wav2lip_gan_model = []  # should be a model
  video_full_frames = []
  images_and_audio_list = []
  images_list = []
  mel_step_size = 16
  output_audio_path = ""
  output_audio_filename = ""
  temp_lip_video_no_voice_path=""
  temp_lip_video_no_voice_filename=""
  input_audio_path=""
  input_video_path=""
  output_video_path=""
  output_video_name=""
  lip_video_no_voice_path=""
  split_current_file_name = ""
  fps = 30.0
  face_detect_img_results = []
  device = ""
  face_detect_batch_size = 16
  face_det_results_path_and_name = ""
  datagen_batch_size = 512
  frame_count = 0
  video_width = 0
  video_height = 0
  export_video = False
  def __init__(self):
    print("Avatar init")

  def _load(self,checkpoint_path):
      device = 'cuda' if torch.cuda.is_available() else 'cpu'
      if device == 'cuda':
          checkpoint = torch.load(checkpoint_path)
      else:
          checkpoint = torch.load(checkpoint_path,
                                  map_location=lambda storage, loc: storage)
      return checkpoint


  def load_model(self,path):
      device = 'cuda' if torch.cuda.is_available() else 'cpu'
      model = Wav2Lip()
      print("Load checkpoint from: {}".format(path))
      checkpoint = self._load(path)
      s = checkpoint["state_dict"]
      new_s = {}
      for k, v in s.items():
          new_s[k.replace('module.', '')] = v
      model.load_state_dict(new_s)

      model = model.to(device)
      self.wav2lip_gan_model = model.eval()
    #return model.eval()

  def get_video_full_frames(self, video_path):
    video_stream = cv2.VideoCapture(video_path)

    self.fps = video_stream.get(cv2.CAP_PROP_FPS)
    self.frame_count = video_stream.get(cv2.CAP_PROP_FRAME_COUNT)
    self.video_width = video_stream.get(cv2.CAP_PROP_FRAME_WIDTH)
    self.video_height = video_stream.get(cv2.CAP_PROP_FRAME_HEIGHT)
    print("fps="+str(self.fps))
    print('Reading video frames...')

    self.video_full_frames = []

    is_first_frame = True

    while 1:
      still_reading, frame = video_stream.read()
      if not still_reading:
        video_stream.release()
        break
      self.video_full_frames.append(frame)
      # if is_first_frame:
      #   first_frame_shape=frame.shape
      #   first_frame=frame
      #   is_first_frame = False
    # #[] is a list
    # #full frame is a video!!!!, so 4 dimension
    # print("CV2 frame_count="+str(self.frame_count))
    # print("CV2 video_width="+str(self.video_width))
    # print("CV2 video_height="+str(self.video_height))
    # print("first frame shape="+str(first_frame_shape))
    #
    # print ("Number of frames available for inference: "+str(len(self.video_full_frames)))
    # print("frame element="+str(first_frame[100][100][0]))
    # print("frame element type="+str(type(first_frame[100][100][0])))
    # #The value range for numpy.uint8 is from 0 to 255.
    # print("len(full_frames)"+str(len(self.video_full_frames)))



  def create_mel_from_audio(self,input_text):
    tts = gTTS(text=input_text, lang="en")
    if not os.path.exists(self.output_audio_path):
      print(f"{self.output_audio_path} does not exist, creating one")
      os.makedirs(self.output_audio_path)
    tts.save(f"{self.output_audio_path}input_audio.mp3")
    sound = AudioSegment.from_mp3(f"{self.output_audio_path}input_audio.mp3")

    # Get the duration in seconds
    sound_duration = sound.duration_seconds

    sound.export(f"{self.output_audio_path}temp_{self.output_audio_filename}", format="wav")

    wav = audio.load_wav(f"{self.output_audio_path}temp_{self.output_audio_filename}", 16000)

    mel = audio.melspectrogram(wav)
    # print(mel.shape)
    # #(80, 97)
    # #It means that the mel spectrogram of the audio input has 80 mel frequency bands and 97 time frames.
    # #Yes, mel frequency bands do overlap
    # #if wav is longer, so will the nmber of time frames
    # #(80, 344)
    # #mel is numpy.ndarray
    # print("mel data type =" + str(type(mel)))
    # print("mel element type =" +str(type(mel[1][2])))
    # print("len(mel[0])="+str(len(mel[0])))
    # #each mel element is numpy.float64, so can go negative

    mel_chunks = []
    mel_idx_multiplier = 80./self.fps
    #seems there is always 80 mel frequency
    #print("mel_idx_multiplier="+str(mel_idx_multiplier))
    #30 frames per seconds, 80 mel frequency bands, so 2.66 bands per frame per second
    i = 0
    while 1:
      start_idx = int(i * mel_idx_multiplier)
      #len(mel[0]) is the number of time frames of the audio
      if start_idx + self.mel_step_size > len(mel[0]):
        mel_chunks.append(mel[:, len(mel[0]) - self.mel_step_size:])
        break
      mel_chunks.append(mel[:, start_idx : start_idx + self.mel_step_size])
      i += 1
    # for b_index, b_item in enumerate(reversed(mel_chunks)):
    #   print(str(b_index)+" "+str(np.average(b_item)))

    for index, item in enumerate(reversed(mel_chunks)):
      #print(str(index)+" "+str(np.average(item)))
      if np.average(item) > -4.0:
        break
    print("stop at "+str(index))
    num_frames_to_trim=index-1
    mel_chunks=mel_chunks[:-num_frames_to_trim]
    print("wav length={} duration={} num_frames_to_trim={} result={}".format(len(wav),sound_duration,num_frames_to_trim,str(16000*num_frames_to_trim//30)))
    wav=wav[:-(16000*num_frames_to_trim//30)]
    sf.write(f"{self.output_audio_path}{self.output_audio_filename}", wav, 16000)
    sound_file = io.BytesIO(open(f"{self.output_audio_path}{self.output_audio_filename}", "rb").read())

    # Load the wav file as an AudioSegment object
    audio_segment_sound = AudioSegment.from_wav(sound_file)
    return mel_chunks, audio_segment_sound

  def get_smoothened_boxes(self, boxes, T):
      for i in range(len(boxes)):
          if i + T > len(boxes):
              window = boxes[len(boxes) - T:]
          else:
              window = boxes[i : i + T]
          boxes[i] = np.mean(window, axis=0)
      return boxes


  def create_face_detection_results(self, full_frames,save_result=True):
    detector = FACE_DETECTION.FaceAlignment(FACE_DETECTION.LandmarksType._2D,
                                              flip_input=False, device=self.device)
    images=full_frames
    while 1:
      predictions = []
      try:
        for i in tqdm(range(0, len(images), self.face_detect_batch_size)):
          predictions.extend(detector.get_detections_for_batch(np.array(images[i:i + self.face_detect_batch_size])))
      except RuntimeError:
        if self.face_detect_batch_size == 1:
          raise RuntimeError('Image too big to run face detection on GPU. Please use the --resize_factor argument')
        self.face_detect_batch_size //= 2
        print('Recovering from OOM error; New batch size: {}'.format(self.face_detect_batch_size))
        continue
      break

    face_detect_results = []
    pady1, pady2, padx1, padx2 = [0, 10, 0, 0]
    for rect, image in zip(predictions, images):
      if rect is None:
        cv2.imwrite('temp_faulty_frame.jpg', image) # check this frame where the face was not detected.
        raise ValueError('Face not detected! Ensure the video contains a face in all the frames.')

      y1 = max(0, rect[1] - pady1)
      y2 = min(image.shape[0], rect[3] + pady2)
      x1 = max(0, rect[0] - padx1)
      x2 = min(image.shape[1], rect[2] + padx2)

      face_detect_results.append([x1, y1, x2, y2])
    # print("\n")
    # print("face_detect_results length = " + str(len(face_detect_results)))
    # print("face_detect_results[2]="+str(face_detect_results[2]))

    boxes = np.array(face_detect_results)
    boxes = self.get_smoothened_boxes(boxes, T=5)
    # print ("boxes number of dim="+str(boxes.ndim))
    # print ("boxes shape="+str(boxes.shape))

    self.face_detect_img_results = [[image[y1: y2, x1:x2], (y1, y2, x1, x2)] for image, (x1, y1, x2, y2) in zip(images, boxes)]
    # print ("face_detect_img_results type =" + str(type(self.face_detect_img_results)))
    # print ("face_detect_img_results length =" + str(len(self.face_detect_img_results)))
    # print ("face_detect_img_results[1] type =" + str(type(self.face_detect_img_results[1])))
    # print ("face_detect_img_results[1] length =" + str(len(self.face_detect_img_results[1])))
    # print ("face_detect_img_results[1][1] = " +str(self.face_detect_img_results[1][1])) #this is the box
    # print ("face_detect_img_results[1][1] shape = " +str(self.face_detect_img_results[1][0].shape)) #this is cropped image
    if save_result:
      with open(self.face_det_results_path_and_name, 'wb') as file:
        pickle.dump(self.face_detect_img_results, file)


  def load_face_detection_results(self):
    with open(self.face_det_results_path_and_name, 'rb') as file:
      self.face_detect_img_results = pickle.load(file)
    # print ("face_detect_img_results type =" + str(type(self.face_detect_img_results)))
    # print ("face_detect_img_results length =" + str(len(self.face_detect_img_results)))
    # print ("face_detect_img_results[1] type =" + str(type(self.face_detect_img_results[1])))
    # print ("face_detect_img_results[1] length =" + str(len(self.face_detect_img_results[1])))
    # print ("face_detect_img_results[1][1] = " +str(self.face_detect_img_results[1][1])) #this is the box
    # print ("face_detect_img_results[1][1] shape = " +str(self.face_detect_img_results[1][0].shape)) #this is cropped image


  def datagen(self, full_frames, mels, face_detect_results):
    img_batch, mel_batch, frame_batch, coords_batch = [], [], [], []
    print(len(full_frames))
    for i, m in enumerate(mels):
      idx = i%len(full_frames)
      frame_to_save = full_frames[idx].copy()
      face, coords = face_detect_results[idx].copy()
      img_size = 96 # for wav2lip, their model is trained on 96x96 image
      face = cv2.resize(face, (img_size, img_size))

      img_batch.append(face)
      mel_batch.append(m)
      frame_batch.append(frame_to_save)
      coords_batch.append(coords)

      if len(img_batch) >= self.datagen_batch_size:

        img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)

        img_masked = img_batch.copy()
        img_masked[:, img_size//2:] = 0

        img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
        mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
        #print(f"len(img_batch)>{self.datagen_batch_size} now len(img_batch)=" + str(len(img_batch)))
        yield img_batch, mel_batch, frame_batch, coords_batch
        img_batch, mel_batch, frame_batch, coords_batch = [], [], [], []

    if len(img_batch) > 0:
      img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)

      img_masked = img_batch.copy()
      img_masked[:, img_size//2:] = 0

      img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
      mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
      #print("len(img_batch)>0 now len(img_batch)="+str(len(img_batch)))
      yield img_batch, mel_batch, frame_batch, coords_batch
      # datagen_result=datagen(video_full_frames_copy, 512, mel_chunks_from_audio,face_results)
      # for img, mel, frame, coords in datagen_result:
      #   gen_img = img.copy()
      #   gen_mel = mel.copy()
      #   gen_frame = frame.copy()
      #   gen_coords = coords.copy()
      # print("gen image shape ="+str(gen_img.shape))
      # print("gen mel shape = "+str(gen_mel.shape))
      # print("gen_coords length = " + str(len(gen_coords)))
      # print("gen_coords[0] = " + str(gen_coords[0]))
      # print("gen_frame length =" + str(len(gen_frame)))
      # print("gen_frame[0] type =" + str(type(gen_frame[0])))
      # print("gen_frame[0] shape =" + str(gen_frame[0].shape))
      # print(str(gen_frame[0].shape))
      #You are seeing img_batch shape as (batch_size, 96, 96, 6) because you are using the Wav2Lip model with the face detection and alignment option enabled. This option preprocesses the face images by detecting the face region, aligning the face orientation, and cropping and resizing the face image to 96 by 96 pixels. However, instead of discarding the original face image, the option concatenates the aligned face image and the original face image along the channel dimension, resulting in a 6-channel image.



  def make_lip_video(self, datagen_result,video_write_out, mel_chunks,need_split, audio_sound):


    for i, (img_batch, mel_batch, frames, coords) in enumerate(tqdm(datagen_result,
                            total=int(np.ceil(float(len(mel_chunks))/self.datagen_batch_size)))):
        #print("\nin the for loop to unpack datagen_result, only run once")


        img_batch = torch.FloatTensor(np.transpose(img_batch, (0, 3, 1, 2))).to(self.device)
        mel_batch = torch.FloatTensor(np.transpose(mel_batch, (0, 3, 1, 2))).to(self.device)
        inf_start_time = time.time()  # get the start time
        with torch.no_grad():
          pred = self.wav2lip_gan_model(mel_batch, img_batch)

        pred = pred.cpu().numpy().transpose(0, 2, 3, 1) * 255.
        # print("type of pred"+str(type(pred)))
        # print("shape of pred"+str(pred.shape))
        for p, f, c in zip(pred, frames, coords):
          y1, y2, x1, x2 = c
          p = cv2.resize(p.astype(np.uint8), (x2 - x1, y2 - y1)) #before the face was extracted in scaled down to 96x96
          f[y1:y2, x1:x2] = p #paste face back
          self.images_list.append(f)
          if need_split:
            self.image_frame_num_current = self.image_frame_num_current + 1
          if self.export_video:
            video_write_out.write(f)


        if need_split:
          #print("GLOBAL_IMAGE_FRAME_NUM_CURRENT=" + str(self.image_frame_num_current))
          if self.image_frame_num_current >= self.image_frame_num_goal:
            self.images_and_audio_list.append([self.images_list, audio_sound])
            self.images_list = []
            # print("video_write_out relase in need split")
            if self.export_video:
              video_write_out.release()
        else:
          self.images_and_audio_list.append([self.images_list, audio_sound])
          self.images_list = []
          #print("video_write_out relase")
          if self.export_video:
            video_write_out.release()
        inf_end_time = time.time()  # get the end time
        print(f"Inference time: {inf_end_time - inf_start_time} seconds")  # print the difference
        #print("img_batch length="+str(len(img_batch)))
  def sync_video_audio(self,input_audio_path_and_name, input_video_path_and_name, output_video_path_and_name):
    #ipdb.set_trace()
    command = 'ffmpeg -y -i {} -i {} -strict -2 -q:v 1 {}'.format(input_audio_path_and_name,input_video_path_and_name,
                                                                  output_video_path_and_name)
    subprocess.call(command, shell=platform.system() != 'Windows')
    # command = 'ffmpeg -y -i {} -i {} -strict -2 -q:v 1 {}'.format(input_audio_path, input_video_path,res[0]+'/temp'+res[1] )
    # subprocess.call(command, shell=platform.system() != 'Windows')
    # command = 'ffmpeg -ss 00:00:00 -t {} -i {} -c copy {}'.format(str(round(num_of_frames/fps,2)),res[0]+'/temp'+res[1],output_video_path )
    # subprocess.call(command, shell=platform.system() != 'Windows')


  def video_audio_adjust(self, mel_chunks_from_audio, frame_chunks_from_video):
    out_frame_chunks_from_video=frame_chunks_from_video.copy()
    out_faces_from_detect_results=self.face_detect_img_results.copy()
    audio_duration= len(mel_chunks_from_audio)
    video_duration= len(frame_chunks_from_video)
    # print("mel length="+str(audio_duration))
    # print("frame length="+str(video_duration))
    if audio_duration != video_duration:
      if audio_duration>video_duration:
        differece=audio_duration-video_duration
        # calculate how many times video should be concat
        times=differece/video_duration
        # create a file with video name and concat the video using ffmpeg

        # if times fraction then add 1 to times
        if times%1!=0:
            times+=2
        out_frame_chunks_from_video=out_frame_chunks_from_video*int(times)
        out_faces_from_detect_results=out_faces_from_detect_results*int(times)
        new_video_duration= len(out_frame_chunks_from_video)
        # print("extending video frames and face detect")
        # print("new frame length="+str(new_video_duration))
        if new_video_duration > audio_duration:
          out_frame_chunks_from_video=out_frame_chunks_from_video[:audio_duration]
          out_faces_from_detect_results=out_faces_from_detect_results[:audio_duration]
        new_video_duration= len(out_frame_chunks_from_video)
        # print("new frame length="+str(new_video_duration))
      else:
        # print("truncate video frames and face detect")
        out_frame_chunks_from_video=out_frame_chunks_from_video[:audio_duration]
        out_faces_from_detect_results=out_faces_from_detect_results[:audio_duration]
    return out_frame_chunks_from_video,out_faces_from_detect_results

  def video_audio_adjust_parallel(self, mel_chunks_from_audio, frame_chunks_from_video,
                                  pre_frame_chunks_from_video, pre_faces_from_detect_results):

    out_frame_chunks_from_video=frame_chunks_from_video.copy()
    out_faces_from_detect_results=self.face_detect_img_results.copy()
    audio_duration= len(mel_chunks_from_audio)
    video_duration= len(frame_chunks_from_video)

    post_frame_chunks_from_video=[]
    post_faces_from_detect_results=[]
    pre_video_duration= len(pre_frame_chunks_from_video)

    # print("video_audio_adjust_parallel mel length="+str(audio_duration))
    # print("video_audio_adjust_parallel frame length="+str(video_duration))
    # print("video_audio_adjust_parallel pre frame length="+str(pre_video_duration))
    if (audio_duration-pre_video_duration) != video_duration:
      if (audio_duration-pre_video_duration)>video_duration:
        # print("in Case 1")
        differece=(audio_duration-pre_video_duration)-video_duration
        # calculate how many times video should be concat
        times=differece/video_duration
        # create a file with video name and concat the video using ffmpeg

        # if times fraction then add 1 to times
        if times%1!=0:
            times+=2
        # print("video_audio_adjust_parallel times="+str(times))
        out_frame_chunks_from_video=out_frame_chunks_from_video*int(times)
        # print("video_audio_adjust_parallel video length after multiplying with time ="+str(len(out_frame_chunks_from_video)))
        # if len(pre_frame_chunks_from_video) > 0 :
        #   cv2.imwrite('/content/pre_video_first_'+DEBUG_GLOBAL_CURRENT_FILE_NAME, pre_frame_chunks_from_video[0])
        #   cv2.imwrite('/content/pre_video_last_'+DEBUG_GLOBAL_CURRENT_FILE_NAME, pre_frame_chunks_from_video[-1])
        # cv2.imwrite('/content/video_first_'+DEBUG_GLOBAL_CURRENT_FILE_NAME, out_frame_chunks_from_video[0])
        out_frame_chunks_from_video=pre_frame_chunks_from_video+out_frame_chunks_from_video
        out_faces_from_detect_results=out_faces_from_detect_results*int(times)
        out_faces_from_detect_results=pre_faces_from_detect_results+out_faces_from_detect_results
        new_video_duration= len(out_frame_chunks_from_video)
        # print("extending video frames and face detect")
        # print("new frame length="+str(new_video_duration))
        if new_video_duration > audio_duration:
          # print("in Case 1a")
          c = np.absolute(out_frame_chunks_from_video[audio_duration-1]- out_frame_chunks_from_video[audio_duration]) # or c = a - b
          # print("video_audio_adjust_parallel difference at cut off is "+str(np.mean(c) ))

          out_frame_chunks_from_video_copy=out_frame_chunks_from_video.copy()
          out_frame_chunks_from_video=out_frame_chunks_from_video[:audio_duration]
          post_frame_chunks_from_video=out_frame_chunks_from_video_copy[audio_duration:]
          out_faces_from_detect_results_copy=out_faces_from_detect_results.copy()
          out_faces_from_detect_results=out_faces_from_detect_results[:audio_duration]
          post_faces_from_detect_results=out_faces_from_detect_results_copy[audio_duration:]

        #else:
          # print("unhandled case 1")
        #new_video_duration= len(out_frame_chunks_from_video)
        # print("new frame length="+str(new_video_duration))
      else:
        # print("in Case 2")
        # print("truncate video frames and face detect")

        # print("video_audio_adjust_parallel video length pre_frame_chunks_from_video ="+str(len(pre_frame_chunks_from_video)))
        # print("video_audio_adjust_parallel video length out_frame_chunks_from_video ="+str(len(out_frame_chunks_from_video)))

        out_frame_chunks_from_video=pre_frame_chunks_from_video+out_frame_chunks_from_video
        c = np.absolute(out_frame_chunks_from_video[audio_duration-1]-out_frame_chunks_from_video[audio_duration]) # or c = a - b
        # print("video_audio_adjust_parallel difference at cut off is "+str(np.mean(c) ))
        out_faces_from_detect_results=pre_faces_from_detect_results+out_faces_from_detect_results
        out_frame_chunks_from_video_copy=out_frame_chunks_from_video.copy()
        out_frame_chunks_from_video=out_frame_chunks_from_video[:audio_duration]
        post_frame_chunks_from_video=out_frame_chunks_from_video_copy[audio_duration:]




        out_faces_from_detect_results_copy=out_faces_from_detect_results.copy()
        out_faces_from_detect_results=out_faces_from_detect_results[:audio_duration]
        post_faces_from_detect_results=out_faces_from_detect_results_copy[audio_duration:]
        # cv2.imwrite('/content/video_last_'+DEBUG_GLOBAL_CURRENT_FILE_NAME, out_frame_chunks_from_video[-1])
        # if len(post_frame_chunks_from_video) > 0 :
        #   cv2.imwrite('/content/post_video_first_'+DEBUG_GLOBAL_CURRENT_FILE_NAME, post_frame_chunks_from_video[0])
        #   cv2.imwrite('/content/post_video_last_'+DEBUG_GLOBAL_CURRENT_FILE_NAME, post_frame_chunks_from_video[-1])
    #else:
      # print("unhandled case 2")
    return out_frame_chunks_from_video,out_faces_from_detect_results,post_frame_chunks_from_video,post_faces_from_detect_results


  def text_to_lip_video(self, input_text):

    mel_chunks_from_audio, audio_segment =self.create_mel_from_audio(input_text)
    print(str(len(self.face_detect_img_results)))
    video_full_frames_copy=self.video_full_frames.copy()

    video_full_frames_copy,face_detect_results=self.video_audio_adjust(mel_chunks_from_audio,video_full_frames_copy)

    gen=self.datagen(video_full_frames_copy, mel_chunks_from_audio,face_detect_results)

    if self.export_video:
      video_write_handle = cv2.VideoWriter(self.temp_lip_video_no_voice_path+self.temp_lip_video_no_voice_filename,
                            cv2.VideoWriter_fourcc(*'DIVX'), self.fps,
                                           (self.video_full_frames[0].shape[0], self.video_full_frames[0].shape[1]))
    else:
      video_write_handle =0

    self.make_lip_video(gen,video_write_handle, mel_chunks_from_audio,len(mel_chunks_from_audio)>self.datagen_batch_size,
                        audio_segment)
    if self.export_video:
      self.sync_video_audio(self.output_audio_path+self.output_audio_filename,
                            self.temp_lip_video_no_voice_path+self.temp_lip_video_no_voice_filename,
                            self.output_video_path+self.output_video_name
                            )
    self.image_frame_num_current=0
  def text_to_lip_video_parallel(self, input_text, pre_base_video_frames,pre_face_detect_results):



    mel_chunks_from_audio, audio_segment = self.create_mel_from_audio(input_text)
    print(str(len(self.face_detect_img_results)))
    video_full_frames_copy=self.video_full_frames.copy()

    video_full_frames_copy,face_detect_results,post_base_video_frames,post_face_detect_results=(
      self.video_audio_adjust_parallel(mel_chunks_from_audio,video_full_frames_copy,
                                       pre_base_video_frames,pre_face_detect_results))

    gen=self.datagen(video_full_frames_copy,mel_chunks_from_audio,face_detect_results)

    if self.export_video:
      video_write_handle = cv2.VideoWriter(self.temp_lip_video_no_voice_path + self.temp_lip_video_no_voice_filename,
                                           cv2.VideoWriter_fourcc(*'DIVX'), self.fps,
                                           (self.video_full_frames[0].shape[0], self.video_full_frames[0].shape[1]))
    else:
      video_write_handle=0

    self.make_lip_video(gen,video_write_handle, mel_chunks_from_audio,len(mel_chunks_from_audio)>self.datagen_batch_size,audio_segment)
    if self.export_video:
      self.sync_video_audio(self.output_audio_path + self.output_audio_filename,
                            self.temp_lip_video_no_voice_path + self.temp_lip_video_no_voice_filename,
                            self.output_video_path + self.split_current_file_name)
    image_frame_num_current=0


    return post_base_video_frames,post_face_detect_results
  def delete_files_in_path(self,dir_path):
    # Get the list of files in the directory
    files = os.listdir(dir_path)

    # Check if the list is not empty
    if files:
      # Loop through the files
      for file in files:
        # Join the file name with the directory path
        file_path = os.path.join(dir_path, file)
        # Check if the file is a regular file (not a directory or a link)
        if os.path.isfile(file_path):
        # Delete the file
          os.remove(file_path)

  def dir_clean_up(self):
    if os.path.isdir(self.output_audio_path):
      self.delete_files_in_path(self.output_audio_path)
    else:
      os.mkdir(self.output_audio_path)

    if (self.export_video):
      if os.path.isdir(self.temp_lip_video_no_voice_path):
        self.delete_files_in_path(self.temp_lip_video_no_voice_path)
      else:
        os.mkdir(self.temp_lip_video_no_voice_path)

      if os.path.isdir(self.output_video_path):
        self.delete_files_in_path(self.output_video_path)
      else:
        os.mkdir(self.output_video_path)