import streamlit as st
import os
import sys
import torch
import pickle
import numpy
import librosa
import subprocess
from avatar import Avatar
def run_pickleface():
try:
result = subprocess.run(
['python', 'pickleface.py'],
check=True,
capture_output=True,
text=True
)
print(result.stdout)
if result.returncode != 0:
st.error(f"Error creating face detection results: {result.stderr}")
return False
return True
except subprocess.CalledProcessError as e:
st.error(f"Critical error running pickleface.py: {e.stderr}")
return False
def initialize_face_detection_results():
# Kiểm tra xem tất cả file pkl đã tồn tại chưa
missing_files = [opt for opt in options if not os.path.exists(f'ref_videos/{opt}_face_det_result.pkl')]
if missing_files:
current_status_placeholder.write("Creating face detection results...")
if not run_pickleface():
st.error("Failed to create face detection results")
st.stop()
current_status_placeholder.write("Face detection results created successfully!")
# Cấu hình ban đầu
options = ['Aude', 'Kyla', 'Liv', 'MC6']
images = ['ref_videos/Aude.png', 'ref_videos/Kyla.png', 'ref_videos/Liv.png', 'ref_videos/MC6.png']
# Thêm đường dẫn đến thư mục Wav2Lip
wav2lip_path = os.path.join(os.path.dirname(__file__), "Wav2Lip")
if wav2lip_path not in sys.path:
sys.path.insert(0, wav2lip_path)
# Giao diện
big_text = """
Text to Speech Synchronized Video
"""
st.markdown(big_text, unsafe_allow_html=True)
current_status_placeholder = st.empty()
init_progress_bar = st.progress(0)
# Khởi tạo session state
if 'is_initialized' not in st.session_state:
initialize_face_detection_results()
# Khởi tạo Avatar
st.session_state.avatar = Avatar()
st.session_state.avatar.export_video = False
# Load model
current_status_placeholder.write("Loading model...")
st.session_state.avatar.load_model("checkpoint/wav2lip_gan.pth")
current_status_placeholder.write("Model loaded successfully")
# Cấu hình thiết bị
st.session_state.avatar.device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f"Using device: {st.session_state.avatar.device}")
# Cấu hình đường dẫn
st.session_state.avatar.output_audio_path = "audio/"
st.session_state.avatar.output_audio_filename = "result.wav"
st.session_state.avatar.temp_lip_video_no_voice_path = "temp/"
st.session_state.avatar.temp_lip_video_no_voice_filename = "result.avi"
st.session_state.avatar.output_video_path = "results/"
st.session_state.avatar.output_video_name = "result_voice.mp4"
# Khởi tạo video mặc định
st.session_state.selected_option = "Liv"
st.session_state.avatar.ref_video_path_and_filename = f"ref_videos/{st.session_state.selected_option}.mp4"
# Xử lý video và face detection
st.session_state.avatar.get_video_full_frames(st.session_state.avatar.ref_video_path_and_filename)
st.session_state.avatar.face_detect_batch_size = 16
# Load face detection results cho tất cả options
st.session_state.face_det_results_dict = {}
for option in options:
with open(f'ref_videos/{option}_face_det_result.pkl', 'rb') as file:
st.session_state.face_det_results_dict[option] = pickle.load(file)
st.session_state.avatar.face_detect_img_results = st.session_state.face_det_results_dict[st.session_state.selected_option]
st.session_state.avatar.face_det_results_path_and_name = f'ref_videos/{st.session_state.selected_option}_face_det_result.pkl'
# Xử lý text to speech
input_text = "Hi How are you?"
st.session_state.avatar.text_to_lip_video(input_text, init_progress_bar)
current_status_placeholder.write("Face detection results loaded")
st.session_state['is_initialized'] = True
# Giao diện lựa chọn video
selected_option = st.radio("Choose an option:", options, index=options.index(st.session_state.selected_option))
img_col1, img_col2 = st.columns([1,1])
with img_col1:
st.image(images[options.index(selected_option)])
# Xử lý khi thay đổi lựa chọn video
if st.session_state.selected_option != selected_option:
print("The selected option has changed!")
st.session_state.selected_option = selected_option
st.session_state.avatar.ref_video_path_and_filename = f"ref_videos/{st.session_state.selected_option}.mp4"
st.session_state.avatar.get_video_full_frames(st.session_state.avatar.ref_video_path_and_filename)
st.session_state.avatar.face_detect_img_results = st.session_state.face_det_results_dict[st.session_state.selected_option]