Spaces:
Running
Running
File size: 54,651 Bytes
e4af8c9 8353fd4 e4af8c9 8353fd4 e4af8c9 8353fd4 e4af8c9 8353fd4 e4af8c9 b85203e e4af8c9 8353fd4 b85203e 8353fd4 b85203e 8353fd4 d5d6ab5 8156ae4 8353fd4 0f81310 d5d6ab5 c673115 8353fd4 00e0e8d 8353fd4 e4af8c9 8353fd4 1d1b844 d5d6ab5 8353fd4 d734be8 00e0e8d d5d6ab5 8353fd4 d5d6ab5 8353fd4 a1fff7f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 |
# This code is adapted from https://github.com/THUDM/CogVideo/blob/ff423aa169978fb2f636f761e348631fa3178b03/cogvideo_pipeline.py
from __future__ import annotations
import argparse
import logging
import os
import pathlib
import shutil
import subprocess
import sys
import tempfile
import time
import zipfile
from typing import Any
if os.getenv('SYSTEM') == 'spaces':
subprocess.run('pip install icetk==0.0.4'.split())
subprocess.run('pip install SwissArmyTransformer==0.2.9'.split())
subprocess.run(
'pip install git+https://github.com/Sleepychord/Image-Local-Attention@43fee31'
.split())
#subprocess.run('git clone https://github.com/NVIDIA/apex'.split())
#subprocess.run('git checkout 1403c21'.split(), cwd='apex')
#with open('patch.apex') as f:
# subprocess.run('patch -p1'.split(), cwd='apex', stdin=f)
#subprocess.run(
# 'pip install -v --disable-pip-version-check --no-cache-dir --global-option --cpp_ext --global-option --cuda_ext ./'
# .split(),
# cwd='apex')
#subprocess.run('rm -rf apex'.split())
with open('patch') as f:
subprocess.run('patch -p1'.split(), cwd='CogVideo', stdin=f)
from huggingface_hub import hf_hub_download
def download_and_extract_icetk_models() -> None:
icetk_model_dir = pathlib.Path('/home/user/.icetk_models')
icetk_model_dir.mkdir()
path = hf_hub_download('THUDM/icetk',
'models.zip',
use_auth_token=os.getenv('HF_TOKEN'))
with zipfile.ZipFile(path) as f:
f.extractall(path=icetk_model_dir.as_posix())
def download_and_extract_cogvideo_models(name: str) -> None:
path = hf_hub_download('THUDM/CogVideo',
name,
use_auth_token=os.getenv('HF_TOKEN'))
with zipfile.ZipFile(path) as f:
f.extractall('pretrained')
os.remove(path)
def download_and_extract_cogview2_models(name: str) -> None:
path = hf_hub_download('THUDM/CogView2', name)
with zipfile.ZipFile(path) as f:
f.extractall()
shutil.move('/home/user/app/sharefs/cogview-new/cogview2-dsr',
'pretrained')
shutil.rmtree('/home/user/app/sharefs/')
os.remove(path)
download_and_extract_icetk_models()
download_and_extract_cogvideo_models('cogvideo-stage1.zip')
#download_and_extract_cogvideo_models('cogvideo-stage2.zip')
#download_and_extract_cogview2_models('cogview2-dsr.zip')
os.environ['SAT_HOME'] = '/home/user/app/pretrained'
import gradio as gr
import imageio.v2 as iio
import numpy as np
import torch
from icetk import IceTokenizer
from SwissArmyTransformer import get_args
from SwissArmyTransformer.arguments import set_random_seed
from SwissArmyTransformer.generation.sampling_strategies import BaseStrategy
from SwissArmyTransformer.resources import auto_create
app_dir = pathlib.Path(__file__).parent
submodule_dir = app_dir / 'CogVideo'
sys.path.insert(0, submodule_dir.as_posix())
from coglm_strategy import CoglmStrategy
from models.cogvideo_cache_model import CogVideoCacheModel
from sr_pipeline import DirectSuperResolution
formatter = logging.Formatter(
'[%(asctime)s] %(name)s %(levelname)s: %(message)s',
datefmt='%Y-%m-%d %H:%M:%S')
stream_handler = logging.StreamHandler(stream=sys.stdout)
stream_handler.setLevel(logging.INFO)
stream_handler.setFormatter(formatter)
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
logger.propagate = False
logger.addHandler(stream_handler)
ICETK_MODEL_DIR = app_dir / 'icetk_models'
def get_masks_and_position_ids_stage1(data, textlen, framelen):
# Extract batch size and sequence length.
tokens = data
seq_length = len(data[0])
# Attention mask (lower triangular).
attention_mask = torch.ones((1, textlen + framelen, textlen + framelen),
device=data.device)
attention_mask[:, :textlen, textlen:] = 0
attention_mask[:, textlen:, textlen:].tril_()
attention_mask.unsqueeze_(1)
# Unaligned version
position_ids = torch.zeros(seq_length,
dtype=torch.long,
device=data.device)
torch.arange(textlen,
out=position_ids[:textlen],
dtype=torch.long,
device=data.device)
torch.arange(512,
512 + seq_length - textlen,
out=position_ids[textlen:],
dtype=torch.long,
device=data.device)
position_ids = position_ids.unsqueeze(0)
return tokens, attention_mask, position_ids
def get_masks_and_position_ids_stage2(data, textlen, framelen):
# Extract batch size and sequence length.
tokens = data
seq_length = len(data[0])
# Attention mask (lower triangular).
attention_mask = torch.ones((1, textlen + framelen, textlen + framelen),
device=data.device)
attention_mask[:, :textlen, textlen:] = 0
attention_mask[:, textlen:, textlen:].tril_()
attention_mask.unsqueeze_(1)
# Unaligned version
position_ids = torch.zeros(seq_length,
dtype=torch.long,
device=data.device)
torch.arange(textlen,
out=position_ids[:textlen],
dtype=torch.long,
device=data.device)
frame_num = (seq_length - textlen) // framelen
assert frame_num == 5
torch.arange(512,
512 + framelen,
out=position_ids[textlen:textlen + framelen],
dtype=torch.long,
device=data.device)
torch.arange(512 + framelen * 2,
512 + framelen * 3,
out=position_ids[textlen + framelen:textlen + framelen * 2],
dtype=torch.long,
device=data.device)
torch.arange(512 + framelen * (frame_num - 1),
512 + framelen * frame_num,
out=position_ids[textlen + framelen * 2:textlen +
framelen * 3],
dtype=torch.long,
device=data.device)
torch.arange(512 + framelen * 1,
512 + framelen * 2,
out=position_ids[textlen + framelen * 3:textlen +
framelen * 4],
dtype=torch.long,
device=data.device)
torch.arange(512 + framelen * 3,
512 + framelen * 4,
out=position_ids[textlen + framelen * 4:textlen +
framelen * 5],
dtype=torch.long,
device=data.device)
position_ids = position_ids.unsqueeze(0)
return tokens, attention_mask, position_ids
def my_update_mems(hiddens, mems_buffers, mems_indexs,
limited_spatial_channel_mem, text_len, frame_len):
if hiddens is None:
return None, mems_indexs
mem_num = len(hiddens)
ret_mem = []
with torch.no_grad():
for id in range(mem_num):
if hiddens[id][0] is None:
ret_mem.append(None)
else:
if id == 0 and limited_spatial_channel_mem and mems_indexs[
id] + hiddens[0][0].shape[1] >= text_len + frame_len:
if mems_indexs[id] == 0:
for layer, hidden in enumerate(hiddens[id]):
mems_buffers[id][
layer, :, :text_len] = hidden.expand(
mems_buffers[id].shape[1], -1,
-1)[:, :text_len]
new_mem_len_part2 = (mems_indexs[id] +
hiddens[0][0].shape[1] -
text_len) % frame_len
if new_mem_len_part2 > 0:
for layer, hidden in enumerate(hiddens[id]):
mems_buffers[id][
layer, :, text_len:text_len +
new_mem_len_part2] = hidden.expand(
mems_buffers[id].shape[1], -1,
-1)[:, -new_mem_len_part2:]
mems_indexs[id] = text_len + new_mem_len_part2
else:
for layer, hidden in enumerate(hiddens[id]):
mems_buffers[id][layer, :,
mems_indexs[id]:mems_indexs[id] +
hidden.shape[1]] = hidden.expand(
mems_buffers[id].shape[1], -1, -1)
mems_indexs[id] += hidden.shape[1]
ret_mem.append(mems_buffers[id][:, :, :mems_indexs[id]])
return ret_mem, mems_indexs
def calc_next_tokens_frame_begin_id(text_len, frame_len, total_len):
# The fisrt token's position id of the frame that the next token belongs to;
if total_len < text_len:
return None
return (total_len - text_len) // frame_len * frame_len + text_len
def my_filling_sequence(
model,
tokenizer,
args,
seq,
batch_size,
get_masks_and_position_ids,
text_len,
frame_len,
strategy=BaseStrategy(),
strategy2=BaseStrategy(),
mems=None,
log_text_attention_weights=0, # default to 0: no artificial change
mode_stage1=True,
enforce_no_swin=False,
guider_seq=None,
guider_text_len=0,
guidance_alpha=1,
limited_spatial_channel_mem=False, # 空间通道的存储限制在本帧内
**kw_args):
'''
seq: [2, 3, 5, ..., -1(to be generated), -1, ...]
mems: [num_layers, batch_size, len_mems(index), mem_hidden_size]
cache, should be first mems.shape[1] parts of context_tokens.
mems are the first-level citizens here, but we don't assume what is memorized.
input mems are used when multi-phase generation.
'''
if guider_seq is not None:
logger.debug('Using Guidance In Inference')
if limited_spatial_channel_mem:
logger.debug("Limit spatial-channel's mem to current frame")
assert len(seq.shape) == 2
# building the initial tokens, attention_mask, and position_ids
actual_context_length = 0
while seq[-1][
actual_context_length] >= 0: # the last seq has least given tokens
actual_context_length += 1 # [0, context_length-1] are given
assert actual_context_length > 0
current_frame_num = (actual_context_length - text_len) // frame_len
assert current_frame_num >= 0
context_length = text_len + current_frame_num * frame_len
tokens, attention_mask, position_ids = get_masks_and_position_ids(
seq, text_len, frame_len)
tokens = tokens[..., :context_length]
input_tokens = tokens.clone()
if guider_seq is not None:
guider_index_delta = text_len - guider_text_len
guider_tokens, guider_attention_mask, guider_position_ids = get_masks_and_position_ids(
guider_seq, guider_text_len, frame_len)
guider_tokens = guider_tokens[..., :context_length -
guider_index_delta]
guider_input_tokens = guider_tokens.clone()
for fid in range(current_frame_num):
input_tokens[:, text_len + 400 * fid] = tokenizer['<start_of_image>']
if guider_seq is not None:
guider_input_tokens[:, guider_text_len +
400 * fid] = tokenizer['<start_of_image>']
attention_mask = attention_mask.type_as(next(
model.parameters())) # if fp16
# initialize generation
counter = context_length - 1 # Last fixed index is ``counter''
index = 0 # Next forward starting index, also the length of cache.
mems_buffers_on_GPU = False
mems_indexs = [0, 0]
mems_len = [(400 + 74) if limited_spatial_channel_mem else 5 * 400 + 74,
5 * 400 + 74]
mems_buffers = [
torch.zeros(args.num_layers,
batch_size,
mem_len,
args.hidden_size * 2,
dtype=next(model.parameters()).dtype)
for mem_len in mems_len
]
if guider_seq is not None:
guider_attention_mask = guider_attention_mask.type_as(
next(model.parameters())) # if fp16
guider_mems_buffers = [
torch.zeros(args.num_layers,
batch_size,
mem_len,
args.hidden_size * 2,
dtype=next(model.parameters()).dtype)
for mem_len in mems_len
]
guider_mems_indexs = [0, 0]
guider_mems = None
torch.cuda.empty_cache()
# step-by-step generation
while counter < len(seq[0]) - 1:
# we have generated counter+1 tokens
# Now, we want to generate seq[counter + 1],
# token[:, index: counter+1] needs forwarding.
if index == 0:
group_size = 2 if (input_tokens.shape[0] == batch_size
and not mode_stage1) else batch_size
logits_all = None
for batch_idx in range(0, input_tokens.shape[0], group_size):
logits, *output_per_layers = model(
input_tokens[batch_idx:batch_idx + group_size, index:],
position_ids[..., index:counter + 1],
attention_mask, # TODO memlen
mems=mems,
text_len=text_len,
frame_len=frame_len,
counter=counter,
log_text_attention_weights=log_text_attention_weights,
enforce_no_swin=enforce_no_swin,
**kw_args)
logits_all = torch.cat(
(logits_all,
logits), dim=0) if logits_all is not None else logits
mem_kv01 = [[o['mem_kv'][0] for o in output_per_layers],
[o['mem_kv'][1] for o in output_per_layers]]
next_tokens_frame_begin_id = calc_next_tokens_frame_begin_id(
text_len, frame_len, mem_kv01[0][0].shape[1])
for id, mem_kv in enumerate(mem_kv01):
for layer, mem_kv_perlayer in enumerate(mem_kv):
if limited_spatial_channel_mem and id == 0:
mems_buffers[id][
layer, batch_idx:batch_idx + group_size, :
text_len] = mem_kv_perlayer.expand(
min(group_size,
input_tokens.shape[0] - batch_idx), -1,
-1)[:, :text_len]
mems_buffers[id][layer, batch_idx:batch_idx+group_size, text_len:text_len+mem_kv_perlayer.shape[1]-next_tokens_frame_begin_id] =\
mem_kv_perlayer.expand(min(group_size, input_tokens.shape[0]-batch_idx), -1, -1)[:, next_tokens_frame_begin_id:]
else:
mems_buffers[id][
layer, batch_idx:batch_idx +
group_size, :mem_kv_perlayer.
shape[1]] = mem_kv_perlayer.expand(
min(group_size,
input_tokens.shape[0] - batch_idx), -1,
-1)
mems_indexs[0], mems_indexs[1] = mem_kv01[0][0].shape[
1], mem_kv01[1][0].shape[1]
if limited_spatial_channel_mem:
mems_indexs[0] -= (next_tokens_frame_begin_id - text_len)
mems = [
mems_buffers[id][:, :, :mems_indexs[id]] for id in range(2)
]
logits = logits_all
# Guider
if guider_seq is not None:
guider_logits_all = None
for batch_idx in range(0, guider_input_tokens.shape[0],
group_size):
guider_logits, *guider_output_per_layers = model(
guider_input_tokens[batch_idx:batch_idx + group_size,
max(index -
guider_index_delta, 0):],
guider_position_ids[
...,
max(index - guider_index_delta, 0):counter + 1 -
guider_index_delta],
guider_attention_mask,
mems=guider_mems,
text_len=guider_text_len,
frame_len=frame_len,
counter=counter - guider_index_delta,
log_text_attention_weights=log_text_attention_weights,
enforce_no_swin=enforce_no_swin,
**kw_args)
guider_logits_all = torch.cat(
(guider_logits_all, guider_logits), dim=0
) if guider_logits_all is not None else guider_logits
guider_mem_kv01 = [[
o['mem_kv'][0] for o in guider_output_per_layers
], [o['mem_kv'][1] for o in guider_output_per_layers]]
for id, guider_mem_kv in enumerate(guider_mem_kv01):
for layer, guider_mem_kv_perlayer in enumerate(
guider_mem_kv):
if limited_spatial_channel_mem and id == 0:
guider_mems_buffers[id][
layer, batch_idx:batch_idx + group_size, :
guider_text_len] = guider_mem_kv_perlayer.expand(
min(group_size,
input_tokens.shape[0] - batch_idx),
-1, -1)[:, :guider_text_len]
guider_next_tokens_frame_begin_id = calc_next_tokens_frame_begin_id(
guider_text_len, frame_len,
guider_mem_kv_perlayer.shape[1])
guider_mems_buffers[id][layer, batch_idx:batch_idx+group_size, guider_text_len:guider_text_len+guider_mem_kv_perlayer.shape[1]-guider_next_tokens_frame_begin_id] =\
guider_mem_kv_perlayer.expand(min(group_size, input_tokens.shape[0]-batch_idx), -1, -1)[:, guider_next_tokens_frame_begin_id:]
else:
guider_mems_buffers[id][
layer, batch_idx:batch_idx +
group_size, :guider_mem_kv_perlayer.
shape[1]] = guider_mem_kv_perlayer.expand(
min(group_size,
input_tokens.shape[0] - batch_idx),
-1, -1)
guider_mems_indexs[0], guider_mems_indexs[
1] = guider_mem_kv01[0][0].shape[1], guider_mem_kv01[
1][0].shape[1]
if limited_spatial_channel_mem:
guider_mems_indexs[0] -= (
guider_next_tokens_frame_begin_id -
guider_text_len)
guider_mems = [
guider_mems_buffers[id][:, :, :guider_mems_indexs[id]]
for id in range(2)
]
guider_logits = guider_logits_all
else:
if not mems_buffers_on_GPU:
if not mode_stage1:
torch.cuda.empty_cache()
for idx, mem in enumerate(mems):
mems[idx] = mem.to(next(model.parameters()).device)
if guider_seq is not None:
for idx, mem in enumerate(guider_mems):
guider_mems[idx] = mem.to(
next(model.parameters()).device)
else:
torch.cuda.empty_cache()
for idx, mem_buffer in enumerate(mems_buffers):
mems_buffers[idx] = mem_buffer.to(
next(model.parameters()).device)
mems = [
mems_buffers[id][:, :, :mems_indexs[id]]
for id in range(2)
]
if guider_seq is not None:
for idx, guider_mem_buffer in enumerate(
guider_mems_buffers):
guider_mems_buffers[idx] = guider_mem_buffer.to(
next(model.parameters()).device)
guider_mems = [
guider_mems_buffers[id]
[:, :, :guider_mems_indexs[id]] for id in range(2)
]
mems_buffers_on_GPU = True
logits, *output_per_layers = model(
input_tokens[:, index:],
position_ids[..., index:counter + 1],
attention_mask, # TODO memlen
mems=mems,
text_len=text_len,
frame_len=frame_len,
counter=counter,
log_text_attention_weights=log_text_attention_weights,
enforce_no_swin=enforce_no_swin,
limited_spatial_channel_mem=limited_spatial_channel_mem,
**kw_args)
mem_kv0, mem_kv1 = [o['mem_kv'][0] for o in output_per_layers
], [o['mem_kv'][1] for o in output_per_layers]
if guider_seq is not None:
guider_logits, *guider_output_per_layers = model(
guider_input_tokens[:,
max(index - guider_index_delta, 0):],
guider_position_ids[...,
max(index -
guider_index_delta, 0):counter +
1 - guider_index_delta],
guider_attention_mask,
mems=guider_mems,
text_len=guider_text_len,
frame_len=frame_len,
counter=counter - guider_index_delta,
log_text_attention_weights=0,
enforce_no_swin=enforce_no_swin,
limited_spatial_channel_mem=limited_spatial_channel_mem,
**kw_args)
guider_mem_kv0, guider_mem_kv1 = [
o['mem_kv'][0] for o in guider_output_per_layers
], [o['mem_kv'][1] for o in guider_output_per_layers]
if not mems_buffers_on_GPU:
torch.cuda.empty_cache()
for idx, mem_buffer in enumerate(mems_buffers):
mems_buffers[idx] = mem_buffer.to(
next(model.parameters()).device)
if guider_seq is not None:
for idx, guider_mem_buffer in enumerate(
guider_mems_buffers):
guider_mems_buffers[idx] = guider_mem_buffer.to(
next(model.parameters()).device)
mems_buffers_on_GPU = True
mems, mems_indexs = my_update_mems([mem_kv0, mem_kv1],
mems_buffers, mems_indexs,
limited_spatial_channel_mem,
text_len, frame_len)
if guider_seq is not None:
guider_mems, guider_mems_indexs = my_update_mems(
[guider_mem_kv0, guider_mem_kv1], guider_mems_buffers,
guider_mems_indexs, limited_spatial_channel_mem,
guider_text_len, frame_len)
counter += 1
index = counter
logits = logits[:, -1].expand(batch_size,
-1) # [batch size, vocab size]
tokens = tokens.expand(batch_size, -1)
if guider_seq is not None:
guider_logits = guider_logits[:, -1].expand(batch_size, -1)
guider_tokens = guider_tokens.expand(batch_size, -1)
if seq[-1][counter].item() < 0:
# sampling
guided_logits = guider_logits + (
logits - guider_logits
) * guidance_alpha if guider_seq is not None else logits
if mode_stage1 and counter < text_len + 400:
tokens, mems = strategy.forward(guided_logits, tokens, mems)
else:
tokens, mems = strategy2.forward(guided_logits, tokens, mems)
if guider_seq is not None:
guider_tokens = torch.cat((guider_tokens, tokens[:, -1:]),
dim=1)
if seq[0][counter].item() >= 0:
for si in range(seq.shape[0]):
if seq[si][counter].item() >= 0:
tokens[si, -1] = seq[si, counter]
if guider_seq is not None:
guider_tokens[si,
-1] = guider_seq[si, counter -
guider_index_delta]
else:
tokens = torch.cat(
(tokens, seq[:, counter:counter + 1].clone().expand(
tokens.shape[0], 1).to(device=tokens.device,
dtype=tokens.dtype)),
dim=1)
if guider_seq is not None:
guider_tokens = torch.cat(
(guider_tokens,
guider_seq[:, counter - guider_index_delta:counter + 1 -
guider_index_delta].clone().expand(
guider_tokens.shape[0], 1).to(
device=guider_tokens.device,
dtype=guider_tokens.dtype)),
dim=1)
input_tokens = tokens.clone()
if guider_seq is not None:
guider_input_tokens = guider_tokens.clone()
if (index - text_len - 1) // 400 < (input_tokens.shape[-1] - text_len -
1) // 400:
boi_idx = ((index - text_len - 1) // 400 + 1) * 400 + text_len
while boi_idx < input_tokens.shape[-1]:
input_tokens[:, boi_idx] = tokenizer['<start_of_image>']
if guider_seq is not None:
guider_input_tokens[:, boi_idx -
guider_index_delta] = tokenizer[
'<start_of_image>']
boi_idx += 400
if strategy.is_done:
break
return strategy.finalize(tokens, mems)
class InferenceModel_Sequential(CogVideoCacheModel):
def __init__(self, args, transformer=None, parallel_output=True):
super().__init__(args,
transformer=transformer,
parallel_output=parallel_output,
window_size=-1,
cogvideo_stage=1)
# TODO: check it
def final_forward(self, logits, **kwargs):
logits_parallel = logits
logits_parallel = torch.nn.functional.linear(
logits_parallel.float(),
self.transformer.word_embeddings.weight[:20000].float())
return logits_parallel
class InferenceModel_Interpolate(CogVideoCacheModel):
def __init__(self, args, transformer=None, parallel_output=True):
super().__init__(args,
transformer=transformer,
parallel_output=parallel_output,
window_size=10,
cogvideo_stage=2)
# TODO: check it
def final_forward(self, logits, **kwargs):
logits_parallel = logits
logits_parallel = torch.nn.functional.linear(
logits_parallel.float(),
self.transformer.word_embeddings.weight[:20000].float())
return logits_parallel
def get_default_args() -> argparse.Namespace:
known = argparse.Namespace(generate_frame_num=5,
coglm_temperature2=0.89,
use_guidance_stage1=True,
use_guidance_stage2=False,
guidance_alpha=3.0,
stage_1=True,
stage_2=False,
both_stages=False,
parallel_size=1,
stage1_max_inference_batch_size=-1,
multi_gpu=False,
layout='64, 464, 2064',
window_size=10,
additional_seqlen=2000,
cogvideo_stage=1)
args_list = [
'--tokenizer-type',
'fake',
'--mode',
'inference',
'--distributed-backend',
'nccl',
'--fp16',
'--model-parallel-size',
'1',
'--temperature',
'1.05',
'--top_k',
'12',
'--sandwich-ln',
'--seed',
'1234',
'--num-workers',
'0',
'--batch-size',
'1',
'--max-inference-batch-size',
'8',
]
args = get_args(args_list)
args = argparse.Namespace(**vars(args), **vars(known))
args.layout = [int(x) for x in args.layout.split(',')]
args.do_train = False
return args
class Model:
def __init__(self, only_first_stage: bool = False):
self.args = get_default_args()
if only_first_stage:
self.args.stage_1 = True
self.args.both_stages = False
else:
self.args.stage_1 = False
self.args.both_stages = True
self.tokenizer = self.load_tokenizer()
self.model_stage1, self.args = self.load_model_stage1()
self.model_stage2, self.args = self.load_model_stage2()
self.strategy_cogview2, self.strategy_cogvideo = self.load_strategies()
self.dsr = self.load_dsr()
self.device = torch.device(self.args.device)
def load_tokenizer(self) -> IceTokenizer:
logger.info('--- load_tokenizer ---')
start = time.perf_counter()
tokenizer = IceTokenizer(ICETK_MODEL_DIR.as_posix())
tokenizer.add_special_tokens(
['<start_of_image>', '<start_of_english>', '<start_of_chinese>'])
elapsed = time.perf_counter() - start
logger.info(f'--- done ({elapsed=:.3f}) ---')
return tokenizer
def load_model_stage1(
self) -> tuple[CogVideoCacheModel, argparse.Namespace]:
logger.info('--- load_model_stage1 ---')
start = time.perf_counter()
args = self.args
model_stage1, args = InferenceModel_Sequential.from_pretrained(
args, 'cogvideo-stage1')
model_stage1.eval()
if args.both_stages:
model_stage1 = model_stage1.cpu()
elapsed = time.perf_counter() - start
logger.info(f'--- done ({elapsed=:.3f}) ---')
return model_stage1, args
def load_model_stage2(
self) -> tuple[CogVideoCacheModel | None, argparse.Namespace]:
logger.info('--- load_model_stage2 ---')
start = time.perf_counter()
args = self.args
if args.both_stages:
model_stage2, args = InferenceModel_Interpolate.from_pretrained(
args, 'cogvideo-stage2')
model_stage2.eval()
if args.both_stages:
model_stage2 = model_stage2.cpu()
else:
model_stage2 = None
elapsed = time.perf_counter() - start
logger.info(f'--- done ({elapsed=:.3f}) ---')
return model_stage2, args
def load_strategies(self) -> tuple[CoglmStrategy, CoglmStrategy]:
logger.info('--- load_strategies ---')
start = time.perf_counter()
invalid_slices = [slice(self.tokenizer.num_image_tokens, None)]
strategy_cogview2 = CoglmStrategy(invalid_slices,
temperature=1.0,
top_k=16)
strategy_cogvideo = CoglmStrategy(
invalid_slices,
temperature=self.args.temperature,
top_k=self.args.top_k,
temperature2=self.args.coglm_temperature2)
elapsed = time.perf_counter() - start
logger.info(f'--- done ({elapsed=:.3f}) ---')
return strategy_cogview2, strategy_cogvideo
def load_dsr(self) -> DirectSuperResolution | None:
logger.info('--- load_dsr ---')
start = time.perf_counter()
if self.args.both_stages:
path = auto_create('cogview2-dsr', path=None)
dsr = DirectSuperResolution(self.args,
path,
max_bz=12,
onCUDA=False)
else:
dsr = None
elapsed = time.perf_counter() - start
logger.info(f'--- done ({elapsed=:.3f}) ---')
return dsr
@torch.inference_mode()
def process_stage1(self,
model,
seq_text,
duration,
video_raw_text=None,
video_guidance_text='视频',
image_text_suffix='',
batch_size=1,
image_prompt=None):
process_start_time = time.perf_counter()
generate_frame_num = self.args.generate_frame_num
tokenizer = self.tokenizer
use_guide = self.args.use_guidance_stage1
if next(model.parameters()).device != self.device:
move_start_time = time.perf_counter()
logger.debug('moving stage 1 model to cuda')
model = model.to(self.device)
elapsed = time.perf_counter() - move_start_time
logger.debug(f'moving in model1 takes time: {elapsed:.2f}')
if video_raw_text is None:
video_raw_text = seq_text
mbz = self.args.stage1_max_inference_batch_size if self.args.stage1_max_inference_batch_size > 0 else self.args.max_inference_batch_size
assert batch_size < mbz or batch_size % mbz == 0
frame_len = 400
# generate the first frame:
enc_text = tokenizer.encode(seq_text + image_text_suffix)
seq_1st = enc_text + [tokenizer['<start_of_image>']] + [-1] * 400
logger.info(
f'[Generating First Frame with CogView2] Raw text: {tokenizer.decode(enc_text):s}'
)
text_len_1st = len(seq_1st) - frame_len * 1 - 1
seq_1st = torch.tensor(seq_1st, dtype=torch.long,
device=self.device).unsqueeze(0)
if image_prompt is None:
output_list_1st = []
for tim in range(max(batch_size // mbz, 1)):
start_time = time.perf_counter()
output_list_1st.append(
my_filling_sequence(
model,
tokenizer,
self.args,
seq_1st.clone(),
batch_size=min(batch_size, mbz),
get_masks_and_position_ids=
get_masks_and_position_ids_stage1,
text_len=text_len_1st,
frame_len=frame_len,
strategy=self.strategy_cogview2,
strategy2=self.strategy_cogvideo,
log_text_attention_weights=1.4,
enforce_no_swin=True,
mode_stage1=True,
)[0])
elapsed = time.perf_counter() - start_time
logger.info(f'[First Frame] Elapsed: {elapsed:.2f}')
output_tokens_1st = torch.cat(output_list_1st, dim=0)
given_tokens = output_tokens_1st[:, text_len_1st + 1:text_len_1st +
401].unsqueeze(
1
) # given_tokens.shape: [bs, frame_num, 400]
else:
given_tokens = tokenizer.encode(image_path=image_prompt, image_size=160).repeat(batch_size, 1).unsqueeze(1)
# generate subsequent frames:
total_frames = generate_frame_num
enc_duration = tokenizer.encode(f'{float(duration)}秒')
if use_guide:
video_raw_text = video_raw_text + ' 视频'
enc_text_video = tokenizer.encode(video_raw_text)
seq = enc_duration + [tokenizer['<n>']] + enc_text_video + [
tokenizer['<start_of_image>']
] + [-1] * 400 * generate_frame_num
guider_seq = enc_duration + [tokenizer['<n>']] + tokenizer.encode(
video_guidance_text) + [tokenizer['<start_of_image>']
] + [-1] * 400 * generate_frame_num
logger.info(
f'[Stage1: Generating Subsequent Frames, Frame Rate {4/duration:.1f}] raw text: {tokenizer.decode(enc_text_video):s}'
)
text_len = len(seq) - frame_len * generate_frame_num - 1
guider_text_len = len(guider_seq) - frame_len * generate_frame_num - 1
seq = torch.tensor(seq, dtype=torch.long,
device=self.device).unsqueeze(0).repeat(
batch_size, 1)
guider_seq = torch.tensor(guider_seq,
dtype=torch.long,
device=self.device).unsqueeze(0).repeat(
batch_size, 1)
for given_frame_id in range(given_tokens.shape[1]):
seq[:, text_len + 1 + given_frame_id * 400:text_len + 1 +
(given_frame_id + 1) * 400] = given_tokens[:, given_frame_id]
guider_seq[:, guider_text_len + 1 +
given_frame_id * 400:guider_text_len + 1 +
(given_frame_id + 1) *
400] = given_tokens[:, given_frame_id]
output_list = []
if use_guide:
video_log_text_attention_weights = 0
else:
guider_seq = None
video_log_text_attention_weights = 1.4
for tim in range(max(batch_size // mbz, 1)):
input_seq = seq[:min(batch_size, mbz)].clone(
) if tim == 0 else seq[mbz * tim:mbz * (tim + 1)].clone()
guider_seq2 = (guider_seq[:min(batch_size, mbz)].clone()
if tim == 0 else guider_seq[mbz * tim:mbz *
(tim + 1)].clone()
) if guider_seq is not None else None
output_list.append(
my_filling_sequence(
model,
tokenizer,
self.args,
input_seq,
batch_size=min(batch_size, mbz),
get_masks_and_position_ids=
get_masks_and_position_ids_stage1,
text_len=text_len,
frame_len=frame_len,
strategy=self.strategy_cogview2,
strategy2=self.strategy_cogvideo,
log_text_attention_weights=video_log_text_attention_weights,
guider_seq=guider_seq2,
guider_text_len=guider_text_len,
guidance_alpha=self.args.guidance_alpha,
limited_spatial_channel_mem=True,
mode_stage1=True,
)[0])
output_tokens = torch.cat(output_list, dim=0)[:, 1 + text_len:]
if self.args.both_stages:
move_start_time = time.perf_counter()
logger.debug('moving stage 1 model to cpu')
model = model.cpu()
torch.cuda.empty_cache()
elapsed = time.perf_counter() - move_start_time
logger.debug(f'moving in model1 takes time: {elapsed:.2f}')
# decoding
res = []
for seq in output_tokens:
decoded_imgs = [
self.postprocess(
torch.nn.functional.interpolate(tokenizer.decode(
image_ids=seq.tolist()[i * 400:(i + 1) * 400]),
size=(480, 480))[0])
for i in range(total_frames)
]
res.append(decoded_imgs) # only the last image (target)
assert len(res) == batch_size
tokens = output_tokens[:, :+total_frames * 400].reshape(
-1, total_frames, 400).cpu()
elapsed = time.perf_counter() - process_start_time
logger.info(f'--- done ({elapsed=:.3f}) ---')
return tokens, res[0]
@torch.inference_mode()
def process_stage2(self,
model,
seq_text,
duration,
parent_given_tokens,
video_raw_text=None,
video_guidance_text='视频',
gpu_rank=0,
gpu_parallel_size=1):
process_start_time = time.perf_counter()
generate_frame_num = self.args.generate_frame_num
tokenizer = self.tokenizer
use_guidance = self.args.use_guidance_stage2
stage2_start_time = time.perf_counter()
if next(model.parameters()).device != self.device:
move_start_time = time.perf_counter()
logger.debug('moving stage-2 model to cuda')
model = model.to(self.device)
elapsed = time.perf_counter() - move_start_time
logger.debug(f'moving in stage-2 model takes time: {elapsed:.2f}')
try:
sample_num_allgpu = parent_given_tokens.shape[0]
sample_num = sample_num_allgpu // gpu_parallel_size
assert sample_num * gpu_parallel_size == sample_num_allgpu
parent_given_tokens = parent_given_tokens[gpu_rank *
sample_num:(gpu_rank +
1) *
sample_num]
except:
logger.critical('No frame_tokens found in interpolation, skip')
return False, []
# CogVideo Stage2 Generation
while duration >= 0.5: # TODO: You can change the boundary to change the frame rate
parent_given_tokens_num = parent_given_tokens.shape[1]
generate_batchsize_persample = (parent_given_tokens_num - 1) // 2
generate_batchsize_total = generate_batchsize_persample * sample_num
total_frames = generate_frame_num
frame_len = 400
enc_text = tokenizer.encode(seq_text)
enc_duration = tokenizer.encode(str(float(duration)) + '秒')
seq = enc_duration + [tokenizer['<n>']] + enc_text + [
tokenizer['<start_of_image>']
] + [-1] * 400 * generate_frame_num
text_len = len(seq) - frame_len * generate_frame_num - 1
logger.info(
f'[Stage2: Generating Frames, Frame Rate {int(4/duration):d}] raw text: {tokenizer.decode(enc_text):s}'
)
# generation
seq = torch.tensor(seq, dtype=torch.long,
device=self.device).unsqueeze(0).repeat(
generate_batchsize_total, 1)
for sample_i in range(sample_num):
for i in range(generate_batchsize_persample):
seq[sample_i * generate_batchsize_persample +
i][text_len + 1:text_len + 1 +
400] = parent_given_tokens[sample_i][2 * i]
seq[sample_i * generate_batchsize_persample +
i][text_len + 1 + 400:text_len + 1 +
800] = parent_given_tokens[sample_i][2 * i + 1]
seq[sample_i * generate_batchsize_persample +
i][text_len + 1 + 800:text_len + 1 +
1200] = parent_given_tokens[sample_i][2 * i + 2]
if use_guidance:
guider_seq = enc_duration + [
tokenizer['<n>']
] + tokenizer.encode(video_guidance_text) + [
tokenizer['<start_of_image>']
] + [-1] * 400 * generate_frame_num
guider_text_len = len(
guider_seq) - frame_len * generate_frame_num - 1
guider_seq = torch.tensor(
guider_seq, dtype=torch.long,
device=self.device).unsqueeze(0).repeat(
generate_batchsize_total, 1)
for sample_i in range(sample_num):
for i in range(generate_batchsize_persample):
guider_seq[sample_i * generate_batchsize_persample +
i][text_len + 1:text_len + 1 +
400] = parent_given_tokens[sample_i][2 *
i]
guider_seq[sample_i * generate_batchsize_persample +
i][text_len + 1 + 400:text_len + 1 +
800] = parent_given_tokens[sample_i][2 *
i +
1]
guider_seq[sample_i * generate_batchsize_persample +
i][text_len + 1 + 800:text_len + 1 +
1200] = parent_given_tokens[sample_i][2 *
i +
2]
video_log_text_attention_weights = 0
else:
guider_seq = None
guider_text_len = 0
video_log_text_attention_weights = 1.4
mbz = self.args.max_inference_batch_size
assert generate_batchsize_total < mbz or generate_batchsize_total % mbz == 0
output_list = []
start_time = time.perf_counter()
for tim in range(max(generate_batchsize_total // mbz, 1)):
input_seq = seq[:min(generate_batchsize_total, mbz)].clone(
) if tim == 0 else seq[mbz * tim:mbz * (tim + 1)].clone()
guider_seq2 = (
guider_seq[:min(generate_batchsize_total, mbz)].clone()
if tim == 0 else guider_seq[mbz * tim:mbz *
(tim + 1)].clone()
) if guider_seq is not None else None
output_list.append(
my_filling_sequence(
model,
tokenizer,
self.args,
input_seq,
batch_size=min(generate_batchsize_total, mbz),
get_masks_and_position_ids=
get_masks_and_position_ids_stage2,
text_len=text_len,
frame_len=frame_len,
strategy=self.strategy_cogview2,
strategy2=self.strategy_cogvideo,
log_text_attention_weights=
video_log_text_attention_weights,
mode_stage1=False,
guider_seq=guider_seq2,
guider_text_len=guider_text_len,
guidance_alpha=self.args.guidance_alpha,
limited_spatial_channel_mem=True,
)[0])
elapsed = time.perf_counter() - start_time
logger.info(f'Duration {duration:.2f}, Elapsed: {elapsed:.2f}\n')
output_tokens = torch.cat(output_list, dim=0)
output_tokens = output_tokens[:, text_len + 1:text_len + 1 +
(total_frames) * 400].reshape(
sample_num, -1,
400 * total_frames)
output_tokens_merge = torch.cat(
(output_tokens[:, :, :1 * 400], output_tokens[:, :,
400 * 3:4 * 400],
output_tokens[:, :, 400 * 1:2 * 400],
output_tokens[:, :, 400 * 4:(total_frames) * 400]),
dim=2).reshape(sample_num, -1, 400)
output_tokens_merge = torch.cat(
(output_tokens_merge, output_tokens[:, -1:, 400 * 2:3 * 400]),
dim=1)
duration /= 2
parent_given_tokens = output_tokens_merge
if self.args.both_stages:
move_start_time = time.perf_counter()
logger.debug('moving stage 2 model to cpu')
model = model.cpu()
torch.cuda.empty_cache()
elapsed = time.perf_counter() - move_start_time
logger.debug(f'moving out model2 takes time: {elapsed:.2f}')
elapsed = time.perf_counter() - stage2_start_time
logger.info(f'CogVideo Stage2 completed. Elapsed: {elapsed:.2f}\n')
# direct super-resolution by CogView2
logger.info('[Direct super-resolution]')
dsr_start_time = time.perf_counter()
enc_text = tokenizer.encode(seq_text)
frame_num_per_sample = parent_given_tokens.shape[1]
parent_given_tokens_2d = parent_given_tokens.reshape(-1, 400)
text_seq = torch.tensor(enc_text, dtype=torch.long,
device=self.device).unsqueeze(0).repeat(
parent_given_tokens_2d.shape[0], 1)
sred_tokens = self.dsr(text_seq, parent_given_tokens_2d)
decoded_sr_videos = []
for sample_i in range(sample_num):
decoded_sr_imgs = []
for frame_i in range(frame_num_per_sample):
decoded_sr_img = tokenizer.decode(
image_ids=sred_tokens[frame_i + sample_i *
frame_num_per_sample][-3600:])
decoded_sr_imgs.append(
self.postprocess(
torch.nn.functional.interpolate(decoded_sr_img,
size=(480, 480))[0]))
decoded_sr_videos.append(decoded_sr_imgs)
elapsed = time.perf_counter() - dsr_start_time
logger.info(
f'Direct super-resolution completed. Elapsed: {elapsed:.2f}')
elapsed = time.perf_counter() - process_start_time
logger.info(f'--- done ({elapsed=:.3f}) ---')
return True, decoded_sr_videos[0]
@staticmethod
def postprocess(tensor: torch.Tensor) -> np.ndarray:
return tensor.cpu().mul(255).add_(0.5).clamp_(0, 255).permute(
1, 2, 0).to(torch.uint8).numpy()
def run(self, text: str, seed: int,
only_first_stage: bool,image_prompt: None) -> list[np.ndarray]:
logger.info('==================== run ====================')
start = time.perf_counter()
set_random_seed(seed)
self.args.seed = seed
if only_first_stage:
self.args.stage_1 = True
self.args.both_stages = False
else:
self.args.stage_1 = False
self.args.both_stages = True
parent_given_tokens, res = self.process_stage1(
self.model_stage1,
text,
duration=4.0,
video_raw_text=text,
video_guidance_text='视频',
image_text_suffix=' 高清摄影',
batch_size=self.args.batch_size,
image_prompt=image_prompt)
if not only_first_stage:
_, res = self.process_stage2(
self.model_stage2,
text,
duration=2.0,
parent_given_tokens=parent_given_tokens,
video_raw_text=text + ' 视频',
video_guidance_text='视频',
gpu_rank=0,
gpu_parallel_size=1) # TODO: 修改
elapsed = time.perf_counter() - start
logger.info(f'Elapsed: {elapsed:.3f}')
logger.info('==================== done ====================')
return res
class AppModel(Model):
def __init__(self, only_first_stage: bool):
super().__init__(only_first_stage)
self.translator = gr.Interface.load(
'spaces/chinhon/translation_eng2ch')
def to_video(self, frames: list[np.ndarray]) -> str:
out_file = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False)
if self.args.stage_1:
fps = 4
else:
fps = 8
writer = iio.get_writer(out_file.name, fps=fps)
for frame in frames:
writer.append_data(frame)
writer.close()
return out_file.name
def run_with_translation(
self, text: str, translate: bool, seed: int,
only_first_stage: bool,image_prompt: None) -> tuple[str | None, str | None]:
logger.info(f'{text=}, {translate=}, {seed=}, {only_first_stage=},{image_prompt=}')
if translate:
text = translated_text = self.translator(text)
else:
translated_text = None
frames = self.run(text, seed, only_first_stage,image_prompt)
video_path = self.to_video(frames)
return translated_text, video_path
|