Spaces:
Running
Running
# This code is adapted from https://github.com/THUDM/CogVideo/blob/ff423aa169978fb2f636f761e348631fa3178b03/cogvideo_pipeline.py | |
from __future__ import annotations | |
import argparse | |
import logging | |
import os | |
import pathlib | |
import shutil | |
import subprocess | |
import sys | |
import tempfile | |
import time | |
import zipfile | |
from typing import Any | |
if os.getenv('SYSTEM') == 'spaces': | |
subprocess.run('pip install icetk==0.0.4'.split()) | |
subprocess.run('pip install SwissArmyTransformer==0.2.9'.split()) | |
subprocess.run( | |
'pip install git+https://github.com/Sleepychord/Image-Local-Attention@43fee31' | |
.split()) | |
#subprocess.run('git clone https://github.com/NVIDIA/apex'.split()) | |
#subprocess.run('git checkout 1403c21'.split(), cwd='apex') | |
#with open('patch.apex') as f: | |
# subprocess.run('patch -p1'.split(), cwd='apex', stdin=f) | |
#subprocess.run( | |
# 'pip install -v --disable-pip-version-check --no-cache-dir --global-option --cpp_ext --global-option --cuda_ext ./' | |
# .split(), | |
# cwd='apex') | |
#subprocess.run('rm -rf apex'.split()) | |
with open('patch') as f: | |
subprocess.run('patch -p1'.split(), cwd='CogVideo', stdin=f) | |
from huggingface_hub import hf_hub_download | |
def download_and_extract_icetk_models() -> None: | |
icetk_model_dir = pathlib.Path('/home/user/.icetk_models') | |
icetk_model_dir.mkdir() | |
path = hf_hub_download('THUDM/icetk', | |
'models.zip', | |
use_auth_token=os.getenv('HF_TOKEN')) | |
with zipfile.ZipFile(path) as f: | |
f.extractall(path=icetk_model_dir.as_posix()) | |
def download_and_extract_cogvideo_models(name: str) -> None: | |
path = hf_hub_download('THUDM/CogVideo', | |
name, | |
use_auth_token=os.getenv('HF_TOKEN')) | |
with zipfile.ZipFile(path) as f: | |
f.extractall('pretrained') | |
os.remove(path) | |
def download_and_extract_cogview2_models(name: str) -> None: | |
path = hf_hub_download('THUDM/CogView2', name) | |
with zipfile.ZipFile(path) as f: | |
f.extractall() | |
shutil.move('/home/user/app/sharefs/cogview-new/cogview2-dsr', | |
'pretrained') | |
shutil.rmtree('/home/user/app/sharefs/') | |
os.remove(path) | |
download_and_extract_icetk_models() | |
download_and_extract_cogvideo_models('cogvideo-stage1.zip') | |
#download_and_extract_cogvideo_models('cogvideo-stage2.zip') | |
#download_and_extract_cogview2_models('cogview2-dsr.zip') | |
os.environ['SAT_HOME'] = '/home/user/app/pretrained' | |
import gradio as gr | |
import imageio.v2 as iio | |
import numpy as np | |
import torch | |
from icetk import IceTokenizer | |
from SwissArmyTransformer import get_args | |
from SwissArmyTransformer.arguments import set_random_seed | |
from SwissArmyTransformer.generation.sampling_strategies import BaseStrategy | |
from SwissArmyTransformer.resources import auto_create | |
app_dir = pathlib.Path(__file__).parent | |
submodule_dir = app_dir / 'CogVideo' | |
sys.path.insert(0, submodule_dir.as_posix()) | |
from coglm_strategy import CoglmStrategy | |
from models.cogvideo_cache_model import CogVideoCacheModel | |
from sr_pipeline import DirectSuperResolution | |
formatter = logging.Formatter( | |
'[%(asctime)s] %(name)s %(levelname)s: %(message)s', | |
datefmt='%Y-%m-%d %H:%M:%S') | |
stream_handler = logging.StreamHandler(stream=sys.stdout) | |
stream_handler.setLevel(logging.INFO) | |
stream_handler.setFormatter(formatter) | |
logger = logging.getLogger(__name__) | |
logger.setLevel(logging.INFO) | |
logger.propagate = False | |
logger.addHandler(stream_handler) | |
ICETK_MODEL_DIR = app_dir / 'icetk_models' | |
def get_masks_and_position_ids_stage1(data, textlen, framelen): | |
# Extract batch size and sequence length. | |
tokens = data | |
seq_length = len(data[0]) | |
# Attention mask (lower triangular). | |
attention_mask = torch.ones((1, textlen + framelen, textlen + framelen), | |
device=data.device) | |
attention_mask[:, :textlen, textlen:] = 0 | |
attention_mask[:, textlen:, textlen:].tril_() | |
attention_mask.unsqueeze_(1) | |
# Unaligned version | |
position_ids = torch.zeros(seq_length, | |
dtype=torch.long, | |
device=data.device) | |
torch.arange(textlen, | |
out=position_ids[:textlen], | |
dtype=torch.long, | |
device=data.device) | |
torch.arange(512, | |
512 + seq_length - textlen, | |
out=position_ids[textlen:], | |
dtype=torch.long, | |
device=data.device) | |
position_ids = position_ids.unsqueeze(0) | |
return tokens, attention_mask, position_ids | |
def get_masks_and_position_ids_stage2(data, textlen, framelen): | |
# Extract batch size and sequence length. | |
tokens = data | |
seq_length = len(data[0]) | |
# Attention mask (lower triangular). | |
attention_mask = torch.ones((1, textlen + framelen, textlen + framelen), | |
device=data.device) | |
attention_mask[:, :textlen, textlen:] = 0 | |
attention_mask[:, textlen:, textlen:].tril_() | |
attention_mask.unsqueeze_(1) | |
# Unaligned version | |
position_ids = torch.zeros(seq_length, | |
dtype=torch.long, | |
device=data.device) | |
torch.arange(textlen, | |
out=position_ids[:textlen], | |
dtype=torch.long, | |
device=data.device) | |
frame_num = (seq_length - textlen) // framelen | |
assert frame_num == 5 | |
torch.arange(512, | |
512 + framelen, | |
out=position_ids[textlen:textlen + framelen], | |
dtype=torch.long, | |
device=data.device) | |
torch.arange(512 + framelen * 2, | |
512 + framelen * 3, | |
out=position_ids[textlen + framelen:textlen + framelen * 2], | |
dtype=torch.long, | |
device=data.device) | |
torch.arange(512 + framelen * (frame_num - 1), | |
512 + framelen * frame_num, | |
out=position_ids[textlen + framelen * 2:textlen + | |
framelen * 3], | |
dtype=torch.long, | |
device=data.device) | |
torch.arange(512 + framelen * 1, | |
512 + framelen * 2, | |
out=position_ids[textlen + framelen * 3:textlen + | |
framelen * 4], | |
dtype=torch.long, | |
device=data.device) | |
torch.arange(512 + framelen * 3, | |
512 + framelen * 4, | |
out=position_ids[textlen + framelen * 4:textlen + | |
framelen * 5], | |
dtype=torch.long, | |
device=data.device) | |
position_ids = position_ids.unsqueeze(0) | |
return tokens, attention_mask, position_ids | |
def my_update_mems(hiddens, mems_buffers, mems_indexs, | |
limited_spatial_channel_mem, text_len, frame_len): | |
if hiddens is None: | |
return None, mems_indexs | |
mem_num = len(hiddens) | |
ret_mem = [] | |
with torch.no_grad(): | |
for id in range(mem_num): | |
if hiddens[id][0] is None: | |
ret_mem.append(None) | |
else: | |
if id == 0 and limited_spatial_channel_mem and mems_indexs[ | |
id] + hiddens[0][0].shape[1] >= text_len + frame_len: | |
if mems_indexs[id] == 0: | |
for layer, hidden in enumerate(hiddens[id]): | |
mems_buffers[id][ | |
layer, :, :text_len] = hidden.expand( | |
mems_buffers[id].shape[1], -1, | |
-1)[:, :text_len] | |
new_mem_len_part2 = (mems_indexs[id] + | |
hiddens[0][0].shape[1] - | |
text_len) % frame_len | |
if new_mem_len_part2 > 0: | |
for layer, hidden in enumerate(hiddens[id]): | |
mems_buffers[id][ | |
layer, :, text_len:text_len + | |
new_mem_len_part2] = hidden.expand( | |
mems_buffers[id].shape[1], -1, | |
-1)[:, -new_mem_len_part2:] | |
mems_indexs[id] = text_len + new_mem_len_part2 | |
else: | |
for layer, hidden in enumerate(hiddens[id]): | |
mems_buffers[id][layer, :, | |
mems_indexs[id]:mems_indexs[id] + | |
hidden.shape[1]] = hidden.expand( | |
mems_buffers[id].shape[1], -1, -1) | |
mems_indexs[id] += hidden.shape[1] | |
ret_mem.append(mems_buffers[id][:, :, :mems_indexs[id]]) | |
return ret_mem, mems_indexs | |
def calc_next_tokens_frame_begin_id(text_len, frame_len, total_len): | |
# The fisrt token's position id of the frame that the next token belongs to; | |
if total_len < text_len: | |
return None | |
return (total_len - text_len) // frame_len * frame_len + text_len | |
def my_filling_sequence( | |
model, | |
tokenizer, | |
args, | |
seq, | |
batch_size, | |
get_masks_and_position_ids, | |
text_len, | |
frame_len, | |
strategy=BaseStrategy(), | |
strategy2=BaseStrategy(), | |
mems=None, | |
log_text_attention_weights=0, # default to 0: no artificial change | |
mode_stage1=True, | |
enforce_no_swin=False, | |
guider_seq=None, | |
guider_text_len=0, | |
guidance_alpha=1, | |
limited_spatial_channel_mem=False, # 空间通道的存储限制在本帧内 | |
**kw_args): | |
''' | |
seq: [2, 3, 5, ..., -1(to be generated), -1, ...] | |
mems: [num_layers, batch_size, len_mems(index), mem_hidden_size] | |
cache, should be first mems.shape[1] parts of context_tokens. | |
mems are the first-level citizens here, but we don't assume what is memorized. | |
input mems are used when multi-phase generation. | |
''' | |
if guider_seq is not None: | |
logger.debug('Using Guidance In Inference') | |
if limited_spatial_channel_mem: | |
logger.debug("Limit spatial-channel's mem to current frame") | |
assert len(seq.shape) == 2 | |
# building the initial tokens, attention_mask, and position_ids | |
actual_context_length = 0 | |
while seq[-1][ | |
actual_context_length] >= 0: # the last seq has least given tokens | |
actual_context_length += 1 # [0, context_length-1] are given | |
assert actual_context_length > 0 | |
current_frame_num = (actual_context_length - text_len) // frame_len | |
assert current_frame_num >= 0 | |
context_length = text_len + current_frame_num * frame_len | |
tokens, attention_mask, position_ids = get_masks_and_position_ids( | |
seq, text_len, frame_len) | |
tokens = tokens[..., :context_length] | |
input_tokens = tokens.clone() | |
if guider_seq is not None: | |
guider_index_delta = text_len - guider_text_len | |
guider_tokens, guider_attention_mask, guider_position_ids = get_masks_and_position_ids( | |
guider_seq, guider_text_len, frame_len) | |
guider_tokens = guider_tokens[..., :context_length - | |
guider_index_delta] | |
guider_input_tokens = guider_tokens.clone() | |
for fid in range(current_frame_num): | |
input_tokens[:, text_len + 400 * fid] = tokenizer['<start_of_image>'] | |
if guider_seq is not None: | |
guider_input_tokens[:, guider_text_len + | |
400 * fid] = tokenizer['<start_of_image>'] | |
attention_mask = attention_mask.type_as(next( | |
model.parameters())) # if fp16 | |
# initialize generation | |
counter = context_length - 1 # Last fixed index is ``counter'' | |
index = 0 # Next forward starting index, also the length of cache. | |
mems_buffers_on_GPU = False | |
mems_indexs = [0, 0] | |
mems_len = [(400 + 74) if limited_spatial_channel_mem else 5 * 400 + 74, | |
5 * 400 + 74] | |
mems_buffers = [ | |
torch.zeros(args.num_layers, | |
batch_size, | |
mem_len, | |
args.hidden_size * 2, | |
dtype=next(model.parameters()).dtype) | |
for mem_len in mems_len | |
] | |
if guider_seq is not None: | |
guider_attention_mask = guider_attention_mask.type_as( | |
next(model.parameters())) # if fp16 | |
guider_mems_buffers = [ | |
torch.zeros(args.num_layers, | |
batch_size, | |
mem_len, | |
args.hidden_size * 2, | |
dtype=next(model.parameters()).dtype) | |
for mem_len in mems_len | |
] | |
guider_mems_indexs = [0, 0] | |
guider_mems = None | |
torch.cuda.empty_cache() | |
# step-by-step generation | |
while counter < len(seq[0]) - 1: | |
# we have generated counter+1 tokens | |
# Now, we want to generate seq[counter + 1], | |
# token[:, index: counter+1] needs forwarding. | |
if index == 0: | |
group_size = 2 if (input_tokens.shape[0] == batch_size | |
and not mode_stage1) else batch_size | |
logits_all = None | |
for batch_idx in range(0, input_tokens.shape[0], group_size): | |
logits, *output_per_layers = model( | |
input_tokens[batch_idx:batch_idx + group_size, index:], | |
position_ids[..., index:counter + 1], | |
attention_mask, # TODO memlen | |
mems=mems, | |
text_len=text_len, | |
frame_len=frame_len, | |
counter=counter, | |
log_text_attention_weights=log_text_attention_weights, | |
enforce_no_swin=enforce_no_swin, | |
**kw_args) | |
logits_all = torch.cat( | |
(logits_all, | |
logits), dim=0) if logits_all is not None else logits | |
mem_kv01 = [[o['mem_kv'][0] for o in output_per_layers], | |
[o['mem_kv'][1] for o in output_per_layers]] | |
next_tokens_frame_begin_id = calc_next_tokens_frame_begin_id( | |
text_len, frame_len, mem_kv01[0][0].shape[1]) | |
for id, mem_kv in enumerate(mem_kv01): | |
for layer, mem_kv_perlayer in enumerate(mem_kv): | |
if limited_spatial_channel_mem and id == 0: | |
mems_buffers[id][ | |
layer, batch_idx:batch_idx + group_size, : | |
text_len] = mem_kv_perlayer.expand( | |
min(group_size, | |
input_tokens.shape[0] - batch_idx), -1, | |
-1)[:, :text_len] | |
mems_buffers[id][layer, batch_idx:batch_idx+group_size, text_len:text_len+mem_kv_perlayer.shape[1]-next_tokens_frame_begin_id] =\ | |
mem_kv_perlayer.expand(min(group_size, input_tokens.shape[0]-batch_idx), -1, -1)[:, next_tokens_frame_begin_id:] | |
else: | |
mems_buffers[id][ | |
layer, batch_idx:batch_idx + | |
group_size, :mem_kv_perlayer. | |
shape[1]] = mem_kv_perlayer.expand( | |
min(group_size, | |
input_tokens.shape[0] - batch_idx), -1, | |
-1) | |
mems_indexs[0], mems_indexs[1] = mem_kv01[0][0].shape[ | |
1], mem_kv01[1][0].shape[1] | |
if limited_spatial_channel_mem: | |
mems_indexs[0] -= (next_tokens_frame_begin_id - text_len) | |
mems = [ | |
mems_buffers[id][:, :, :mems_indexs[id]] for id in range(2) | |
] | |
logits = logits_all | |
# Guider | |
if guider_seq is not None: | |
guider_logits_all = None | |
for batch_idx in range(0, guider_input_tokens.shape[0], | |
group_size): | |
guider_logits, *guider_output_per_layers = model( | |
guider_input_tokens[batch_idx:batch_idx + group_size, | |
max(index - | |
guider_index_delta, 0):], | |
guider_position_ids[ | |
..., | |
max(index - guider_index_delta, 0):counter + 1 - | |
guider_index_delta], | |
guider_attention_mask, | |
mems=guider_mems, | |
text_len=guider_text_len, | |
frame_len=frame_len, | |
counter=counter - guider_index_delta, | |
log_text_attention_weights=log_text_attention_weights, | |
enforce_no_swin=enforce_no_swin, | |
**kw_args) | |
guider_logits_all = torch.cat( | |
(guider_logits_all, guider_logits), dim=0 | |
) if guider_logits_all is not None else guider_logits | |
guider_mem_kv01 = [[ | |
o['mem_kv'][0] for o in guider_output_per_layers | |
], [o['mem_kv'][1] for o in guider_output_per_layers]] | |
for id, guider_mem_kv in enumerate(guider_mem_kv01): | |
for layer, guider_mem_kv_perlayer in enumerate( | |
guider_mem_kv): | |
if limited_spatial_channel_mem and id == 0: | |
guider_mems_buffers[id][ | |
layer, batch_idx:batch_idx + group_size, : | |
guider_text_len] = guider_mem_kv_perlayer.expand( | |
min(group_size, | |
input_tokens.shape[0] - batch_idx), | |
-1, -1)[:, :guider_text_len] | |
guider_next_tokens_frame_begin_id = calc_next_tokens_frame_begin_id( | |
guider_text_len, frame_len, | |
guider_mem_kv_perlayer.shape[1]) | |
guider_mems_buffers[id][layer, batch_idx:batch_idx+group_size, guider_text_len:guider_text_len+guider_mem_kv_perlayer.shape[1]-guider_next_tokens_frame_begin_id] =\ | |
guider_mem_kv_perlayer.expand(min(group_size, input_tokens.shape[0]-batch_idx), -1, -1)[:, guider_next_tokens_frame_begin_id:] | |
else: | |
guider_mems_buffers[id][ | |
layer, batch_idx:batch_idx + | |
group_size, :guider_mem_kv_perlayer. | |
shape[1]] = guider_mem_kv_perlayer.expand( | |
min(group_size, | |
input_tokens.shape[0] - batch_idx), | |
-1, -1) | |
guider_mems_indexs[0], guider_mems_indexs[ | |
1] = guider_mem_kv01[0][0].shape[1], guider_mem_kv01[ | |
1][0].shape[1] | |
if limited_spatial_channel_mem: | |
guider_mems_indexs[0] -= ( | |
guider_next_tokens_frame_begin_id - | |
guider_text_len) | |
guider_mems = [ | |
guider_mems_buffers[id][:, :, :guider_mems_indexs[id]] | |
for id in range(2) | |
] | |
guider_logits = guider_logits_all | |
else: | |
if not mems_buffers_on_GPU: | |
if not mode_stage1: | |
torch.cuda.empty_cache() | |
for idx, mem in enumerate(mems): | |
mems[idx] = mem.to(next(model.parameters()).device) | |
if guider_seq is not None: | |
for idx, mem in enumerate(guider_mems): | |
guider_mems[idx] = mem.to( | |
next(model.parameters()).device) | |
else: | |
torch.cuda.empty_cache() | |
for idx, mem_buffer in enumerate(mems_buffers): | |
mems_buffers[idx] = mem_buffer.to( | |
next(model.parameters()).device) | |
mems = [ | |
mems_buffers[id][:, :, :mems_indexs[id]] | |
for id in range(2) | |
] | |
if guider_seq is not None: | |
for idx, guider_mem_buffer in enumerate( | |
guider_mems_buffers): | |
guider_mems_buffers[idx] = guider_mem_buffer.to( | |
next(model.parameters()).device) | |
guider_mems = [ | |
guider_mems_buffers[id] | |
[:, :, :guider_mems_indexs[id]] for id in range(2) | |
] | |
mems_buffers_on_GPU = True | |
logits, *output_per_layers = model( | |
input_tokens[:, index:], | |
position_ids[..., index:counter + 1], | |
attention_mask, # TODO memlen | |
mems=mems, | |
text_len=text_len, | |
frame_len=frame_len, | |
counter=counter, | |
log_text_attention_weights=log_text_attention_weights, | |
enforce_no_swin=enforce_no_swin, | |
limited_spatial_channel_mem=limited_spatial_channel_mem, | |
**kw_args) | |
mem_kv0, mem_kv1 = [o['mem_kv'][0] for o in output_per_layers | |
], [o['mem_kv'][1] for o in output_per_layers] | |
if guider_seq is not None: | |
guider_logits, *guider_output_per_layers = model( | |
guider_input_tokens[:, | |
max(index - guider_index_delta, 0):], | |
guider_position_ids[..., | |
max(index - | |
guider_index_delta, 0):counter + | |
1 - guider_index_delta], | |
guider_attention_mask, | |
mems=guider_mems, | |
text_len=guider_text_len, | |
frame_len=frame_len, | |
counter=counter - guider_index_delta, | |
log_text_attention_weights=0, | |
enforce_no_swin=enforce_no_swin, | |
limited_spatial_channel_mem=limited_spatial_channel_mem, | |
**kw_args) | |
guider_mem_kv0, guider_mem_kv1 = [ | |
o['mem_kv'][0] for o in guider_output_per_layers | |
], [o['mem_kv'][1] for o in guider_output_per_layers] | |
if not mems_buffers_on_GPU: | |
torch.cuda.empty_cache() | |
for idx, mem_buffer in enumerate(mems_buffers): | |
mems_buffers[idx] = mem_buffer.to( | |
next(model.parameters()).device) | |
if guider_seq is not None: | |
for idx, guider_mem_buffer in enumerate( | |
guider_mems_buffers): | |
guider_mems_buffers[idx] = guider_mem_buffer.to( | |
next(model.parameters()).device) | |
mems_buffers_on_GPU = True | |
mems, mems_indexs = my_update_mems([mem_kv0, mem_kv1], | |
mems_buffers, mems_indexs, | |
limited_spatial_channel_mem, | |
text_len, frame_len) | |
if guider_seq is not None: | |
guider_mems, guider_mems_indexs = my_update_mems( | |
[guider_mem_kv0, guider_mem_kv1], guider_mems_buffers, | |
guider_mems_indexs, limited_spatial_channel_mem, | |
guider_text_len, frame_len) | |
counter += 1 | |
index = counter | |
logits = logits[:, -1].expand(batch_size, | |
-1) # [batch size, vocab size] | |
tokens = tokens.expand(batch_size, -1) | |
if guider_seq is not None: | |
guider_logits = guider_logits[:, -1].expand(batch_size, -1) | |
guider_tokens = guider_tokens.expand(batch_size, -1) | |
if seq[-1][counter].item() < 0: | |
# sampling | |
guided_logits = guider_logits + ( | |
logits - guider_logits | |
) * guidance_alpha if guider_seq is not None else logits | |
if mode_stage1 and counter < text_len + 400: | |
tokens, mems = strategy.forward(guided_logits, tokens, mems) | |
else: | |
tokens, mems = strategy2.forward(guided_logits, tokens, mems) | |
if guider_seq is not None: | |
guider_tokens = torch.cat((guider_tokens, tokens[:, -1:]), | |
dim=1) | |
if seq[0][counter].item() >= 0: | |
for si in range(seq.shape[0]): | |
if seq[si][counter].item() >= 0: | |
tokens[si, -1] = seq[si, counter] | |
if guider_seq is not None: | |
guider_tokens[si, | |
-1] = guider_seq[si, counter - | |
guider_index_delta] | |
else: | |
tokens = torch.cat( | |
(tokens, seq[:, counter:counter + 1].clone().expand( | |
tokens.shape[0], 1).to(device=tokens.device, | |
dtype=tokens.dtype)), | |
dim=1) | |
if guider_seq is not None: | |
guider_tokens = torch.cat( | |
(guider_tokens, | |
guider_seq[:, counter - guider_index_delta:counter + 1 - | |
guider_index_delta].clone().expand( | |
guider_tokens.shape[0], 1).to( | |
device=guider_tokens.device, | |
dtype=guider_tokens.dtype)), | |
dim=1) | |
input_tokens = tokens.clone() | |
if guider_seq is not None: | |
guider_input_tokens = guider_tokens.clone() | |
if (index - text_len - 1) // 400 < (input_tokens.shape[-1] - text_len - | |
1) // 400: | |
boi_idx = ((index - text_len - 1) // 400 + 1) * 400 + text_len | |
while boi_idx < input_tokens.shape[-1]: | |
input_tokens[:, boi_idx] = tokenizer['<start_of_image>'] | |
if guider_seq is not None: | |
guider_input_tokens[:, boi_idx - | |
guider_index_delta] = tokenizer[ | |
'<start_of_image>'] | |
boi_idx += 400 | |
if strategy.is_done: | |
break | |
return strategy.finalize(tokens, mems) | |
class InferenceModel_Sequential(CogVideoCacheModel): | |
def __init__(self, args, transformer=None, parallel_output=True): | |
super().__init__(args, | |
transformer=transformer, | |
parallel_output=parallel_output, | |
window_size=-1, | |
cogvideo_stage=1) | |
# TODO: check it | |
def final_forward(self, logits, **kwargs): | |
logits_parallel = logits | |
logits_parallel = torch.nn.functional.linear( | |
logits_parallel.float(), | |
self.transformer.word_embeddings.weight[:20000].float()) | |
return logits_parallel | |
class InferenceModel_Interpolate(CogVideoCacheModel): | |
def __init__(self, args, transformer=None, parallel_output=True): | |
super().__init__(args, | |
transformer=transformer, | |
parallel_output=parallel_output, | |
window_size=10, | |
cogvideo_stage=2) | |
# TODO: check it | |
def final_forward(self, logits, **kwargs): | |
logits_parallel = logits | |
logits_parallel = torch.nn.functional.linear( | |
logits_parallel.float(), | |
self.transformer.word_embeddings.weight[:20000].float()) | |
return logits_parallel | |
def get_default_args() -> argparse.Namespace: | |
known = argparse.Namespace(generate_frame_num=5, | |
coglm_temperature2=0.89, | |
use_guidance_stage1=True, | |
use_guidance_stage2=False, | |
guidance_alpha=3.0, | |
stage_1=True, | |
stage_2=False, | |
both_stages=False, | |
parallel_size=1, | |
stage1_max_inference_batch_size=-1, | |
multi_gpu=False, | |
layout='64, 464, 2064', | |
window_size=10, | |
additional_seqlen=2000, | |
cogvideo_stage=1) | |
args_list = [ | |
'--tokenizer-type', | |
'fake', | |
'--mode', | |
'inference', | |
'--distributed-backend', | |
'nccl', | |
'--fp16', | |
'--model-parallel-size', | |
'1', | |
'--temperature', | |
'1.05', | |
'--top_k', | |
'12', | |
'--sandwich-ln', | |
'--seed', | |
'1234', | |
'--num-workers', | |
'0', | |
'--batch-size', | |
'1', | |
'--max-inference-batch-size', | |
'8', | |
] | |
args = get_args(args_list) | |
args = argparse.Namespace(**vars(args), **vars(known)) | |
args.layout = [int(x) for x in args.layout.split(',')] | |
args.do_train = False | |
return args | |
class Model: | |
def __init__(self, only_first_stage: bool = False): | |
self.args = get_default_args() | |
if only_first_stage: | |
self.args.stage_1 = True | |
self.args.both_stages = False | |
else: | |
self.args.stage_1 = False | |
self.args.both_stages = True | |
self.tokenizer = self.load_tokenizer() | |
self.model_stage1, self.args = self.load_model_stage1() | |
self.model_stage2, self.args = self.load_model_stage2() | |
self.strategy_cogview2, self.strategy_cogvideo = self.load_strategies() | |
self.dsr = self.load_dsr() | |
self.device = torch.device(self.args.device) | |
def load_tokenizer(self) -> IceTokenizer: | |
logger.info('--- load_tokenizer ---') | |
start = time.perf_counter() | |
tokenizer = IceTokenizer(ICETK_MODEL_DIR.as_posix()) | |
tokenizer.add_special_tokens( | |
['<start_of_image>', '<start_of_english>', '<start_of_chinese>']) | |
elapsed = time.perf_counter() - start | |
logger.info(f'--- done ({elapsed=:.3f}) ---') | |
return tokenizer | |
def load_model_stage1( | |
self) -> tuple[CogVideoCacheModel, argparse.Namespace]: | |
logger.info('--- load_model_stage1 ---') | |
start = time.perf_counter() | |
args = self.args | |
model_stage1, args = InferenceModel_Sequential.from_pretrained( | |
args, 'cogvideo-stage1') | |
model_stage1.eval() | |
if args.both_stages: | |
model_stage1 = model_stage1.cpu() | |
elapsed = time.perf_counter() - start | |
logger.info(f'--- done ({elapsed=:.3f}) ---') | |
return model_stage1, args | |
def load_model_stage2( | |
self) -> tuple[CogVideoCacheModel | None, argparse.Namespace]: | |
logger.info('--- load_model_stage2 ---') | |
start = time.perf_counter() | |
args = self.args | |
if args.both_stages: | |
model_stage2, args = InferenceModel_Interpolate.from_pretrained( | |
args, 'cogvideo-stage2') | |
model_stage2.eval() | |
if args.both_stages: | |
model_stage2 = model_stage2.cpu() | |
else: | |
model_stage2 = None | |
elapsed = time.perf_counter() - start | |
logger.info(f'--- done ({elapsed=:.3f}) ---') | |
return model_stage2, args | |
def load_strategies(self) -> tuple[CoglmStrategy, CoglmStrategy]: | |
logger.info('--- load_strategies ---') | |
start = time.perf_counter() | |
invalid_slices = [slice(self.tokenizer.num_image_tokens, None)] | |
strategy_cogview2 = CoglmStrategy(invalid_slices, | |
temperature=1.0, | |
top_k=16) | |
strategy_cogvideo = CoglmStrategy( | |
invalid_slices, | |
temperature=self.args.temperature, | |
top_k=self.args.top_k, | |
temperature2=self.args.coglm_temperature2) | |
elapsed = time.perf_counter() - start | |
logger.info(f'--- done ({elapsed=:.3f}) ---') | |
return strategy_cogview2, strategy_cogvideo | |
def load_dsr(self) -> DirectSuperResolution | None: | |
logger.info('--- load_dsr ---') | |
start = time.perf_counter() | |
if self.args.both_stages: | |
path = auto_create('cogview2-dsr', path=None) | |
dsr = DirectSuperResolution(self.args, | |
path, | |
max_bz=12, | |
onCUDA=False) | |
else: | |
dsr = None | |
elapsed = time.perf_counter() - start | |
logger.info(f'--- done ({elapsed=:.3f}) ---') | |
return dsr | |
def process_stage1(self, | |
model, | |
seq_text, | |
duration, | |
video_raw_text=None, | |
video_guidance_text='视频', | |
image_text_suffix='', | |
batch_size=1): | |
process_start_time = time.perf_counter() | |
generate_frame_num = self.args.generate_frame_num | |
tokenizer = self.tokenizer | |
use_guide = self.args.use_guidance_stage1 | |
if next(model.parameters()).device != self.device: | |
move_start_time = time.perf_counter() | |
logger.debug('moving stage 1 model to cuda') | |
model = model.to(self.device) | |
elapsed = time.perf_counter() - move_start_time | |
logger.debug(f'moving in model1 takes time: {elapsed:.2f}') | |
if video_raw_text is None: | |
video_raw_text = seq_text | |
mbz = self.args.stage1_max_inference_batch_size if self.args.stage1_max_inference_batch_size > 0 else self.args.max_inference_batch_size | |
assert batch_size < mbz or batch_size % mbz == 0 | |
frame_len = 400 | |
# generate the first frame: | |
enc_text = tokenizer.encode(seq_text + image_text_suffix) | |
seq_1st = enc_text + [tokenizer['<start_of_image>']] + [-1] * 400 | |
logger.info( | |
f'[Generating First Frame with CogView2] Raw text: {tokenizer.decode(enc_text):s}' | |
) | |
text_len_1st = len(seq_1st) - frame_len * 1 - 1 | |
seq_1st = torch.tensor(seq_1st, dtype=torch.long, | |
device=self.device).unsqueeze(0) | |
output_list_1st = [] | |
for tim in range(max(batch_size // mbz, 1)): | |
start_time = time.perf_counter() | |
output_list_1st.append( | |
my_filling_sequence( | |
model, | |
tokenizer, | |
self.args, | |
seq_1st.clone(), | |
batch_size=min(batch_size, mbz), | |
get_masks_and_position_ids= | |
get_masks_and_position_ids_stage1, | |
text_len=text_len_1st, | |
frame_len=frame_len, | |
strategy=self.strategy_cogview2, | |
strategy2=self.strategy_cogvideo, | |
log_text_attention_weights=1.4, | |
enforce_no_swin=True, | |
mode_stage1=True, | |
)[0]) | |
elapsed = time.perf_counter() - start_time | |
logger.info(f'[First Frame] Elapsed: {elapsed:.2f}') | |
output_tokens_1st = torch.cat(output_list_1st, dim=0) | |
given_tokens = output_tokens_1st[:, text_len_1st + 1:text_len_1st + | |
401].unsqueeze( | |
1 | |
) # given_tokens.shape: [bs, frame_num, 400] | |
# generate subsequent frames: | |
total_frames = generate_frame_num | |
enc_duration = tokenizer.encode(f'{float(duration)}秒') | |
if use_guide: | |
video_raw_text = video_raw_text + ' 视频' | |
enc_text_video = tokenizer.encode(video_raw_text) | |
seq = enc_duration + [tokenizer['<n>']] + enc_text_video + [ | |
tokenizer['<start_of_image>'] | |
] + [-1] * 400 * generate_frame_num | |
guider_seq = enc_duration + [tokenizer['<n>']] + tokenizer.encode( | |
video_guidance_text) + [tokenizer['<start_of_image>'] | |
] + [-1] * 400 * generate_frame_num | |
logger.info( | |
f'[Stage1: Generating Subsequent Frames, Frame Rate {4/duration:.1f}] raw text: {tokenizer.decode(enc_text_video):s}' | |
) | |
text_len = len(seq) - frame_len * generate_frame_num - 1 | |
guider_text_len = len(guider_seq) - frame_len * generate_frame_num - 1 | |
seq = torch.tensor(seq, dtype=torch.long, | |
device=self.device).unsqueeze(0).repeat( | |
batch_size, 1) | |
guider_seq = torch.tensor(guider_seq, | |
dtype=torch.long, | |
device=self.device).unsqueeze(0).repeat( | |
batch_size, 1) | |
for given_frame_id in range(given_tokens.shape[1]): | |
seq[:, text_len + 1 + given_frame_id * 400:text_len + 1 + | |
(given_frame_id + 1) * 400] = given_tokens[:, given_frame_id] | |
guider_seq[:, guider_text_len + 1 + | |
given_frame_id * 400:guider_text_len + 1 + | |
(given_frame_id + 1) * | |
400] = given_tokens[:, given_frame_id] | |
output_list = [] | |
if use_guide: | |
video_log_text_attention_weights = 0 | |
else: | |
guider_seq = None | |
video_log_text_attention_weights = 1.4 | |
for tim in range(max(batch_size // mbz, 1)): | |
input_seq = seq[:min(batch_size, mbz)].clone( | |
) if tim == 0 else seq[mbz * tim:mbz * (tim + 1)].clone() | |
guider_seq2 = (guider_seq[:min(batch_size, mbz)].clone() | |
if tim == 0 else guider_seq[mbz * tim:mbz * | |
(tim + 1)].clone() | |
) if guider_seq is not None else None | |
output_list.append( | |
my_filling_sequence( | |
model, | |
tokenizer, | |
self.args, | |
input_seq, | |
batch_size=min(batch_size, mbz), | |
get_masks_and_position_ids= | |
get_masks_and_position_ids_stage1, | |
text_len=text_len, | |
frame_len=frame_len, | |
strategy=self.strategy_cogview2, | |
strategy2=self.strategy_cogvideo, | |
log_text_attention_weights=video_log_text_attention_weights, | |
guider_seq=guider_seq2, | |
guider_text_len=guider_text_len, | |
guidance_alpha=self.args.guidance_alpha, | |
limited_spatial_channel_mem=True, | |
mode_stage1=True, | |
)[0]) | |
output_tokens = torch.cat(output_list, dim=0)[:, 1 + text_len:] | |
if self.args.both_stages: | |
move_start_time = time.perf_counter() | |
logger.debug('moving stage 1 model to cpu') | |
model = model.cpu() | |
torch.cuda.empty_cache() | |
elapsed = time.perf_counter() - move_start_time | |
logger.debug(f'moving in model1 takes time: {elapsed:.2f}') | |
# decoding | |
res = [] | |
for seq in output_tokens: | |
decoded_imgs = [ | |
self.postprocess( | |
torch.nn.functional.interpolate(tokenizer.decode( | |
image_ids=seq.tolist()[i * 400:(i + 1) * 400]), | |
size=(480, 480))[0]) | |
for i in range(total_frames) | |
] | |
res.append(decoded_imgs) # only the last image (target) | |
assert len(res) == batch_size | |
tokens = output_tokens[:, :+total_frames * 400].reshape( | |
-1, total_frames, 400).cpu() | |
elapsed = time.perf_counter() - process_start_time | |
logger.info(f'--- done ({elapsed=:.3f}) ---') | |
return tokens, res[0] | |
def process_stage2(self, | |
model, | |
seq_text, | |
duration, | |
parent_given_tokens, | |
video_raw_text=None, | |
video_guidance_text='视频', | |
gpu_rank=0, | |
gpu_parallel_size=1): | |
process_start_time = time.perf_counter() | |
generate_frame_num = self.args.generate_frame_num | |
tokenizer = self.tokenizer | |
use_guidance = self.args.use_guidance_stage2 | |
stage2_start_time = time.perf_counter() | |
if next(model.parameters()).device != self.device: | |
move_start_time = time.perf_counter() | |
logger.debug('moving stage-2 model to cuda') | |
model = model.to(self.device) | |
elapsed = time.perf_counter() - move_start_time | |
logger.debug(f'moving in stage-2 model takes time: {elapsed:.2f}') | |
try: | |
sample_num_allgpu = parent_given_tokens.shape[0] | |
sample_num = sample_num_allgpu // gpu_parallel_size | |
assert sample_num * gpu_parallel_size == sample_num_allgpu | |
parent_given_tokens = parent_given_tokens[gpu_rank * | |
sample_num:(gpu_rank + | |
1) * | |
sample_num] | |
except: | |
logger.critical('No frame_tokens found in interpolation, skip') | |
return False, [] | |
# CogVideo Stage2 Generation | |
while duration >= 0.5: # TODO: You can change the boundary to change the frame rate | |
parent_given_tokens_num = parent_given_tokens.shape[1] | |
generate_batchsize_persample = (parent_given_tokens_num - 1) // 2 | |
generate_batchsize_total = generate_batchsize_persample * sample_num | |
total_frames = generate_frame_num | |
frame_len = 400 | |
enc_text = tokenizer.encode(seq_text) | |
enc_duration = tokenizer.encode(str(float(duration)) + '秒') | |
seq = enc_duration + [tokenizer['<n>']] + enc_text + [ | |
tokenizer['<start_of_image>'] | |
] + [-1] * 400 * generate_frame_num | |
text_len = len(seq) - frame_len * generate_frame_num - 1 | |
logger.info( | |
f'[Stage2: Generating Frames, Frame Rate {int(4/duration):d}] raw text: {tokenizer.decode(enc_text):s}' | |
) | |
# generation | |
seq = torch.tensor(seq, dtype=torch.long, | |
device=self.device).unsqueeze(0).repeat( | |
generate_batchsize_total, 1) | |
for sample_i in range(sample_num): | |
for i in range(generate_batchsize_persample): | |
seq[sample_i * generate_batchsize_persample + | |
i][text_len + 1:text_len + 1 + | |
400] = parent_given_tokens[sample_i][2 * i] | |
seq[sample_i * generate_batchsize_persample + | |
i][text_len + 1 + 400:text_len + 1 + | |
800] = parent_given_tokens[sample_i][2 * i + 1] | |
seq[sample_i * generate_batchsize_persample + | |
i][text_len + 1 + 800:text_len + 1 + | |
1200] = parent_given_tokens[sample_i][2 * i + 2] | |
if use_guidance: | |
guider_seq = enc_duration + [ | |
tokenizer['<n>'] | |
] + tokenizer.encode(video_guidance_text) + [ | |
tokenizer['<start_of_image>'] | |
] + [-1] * 400 * generate_frame_num | |
guider_text_len = len( | |
guider_seq) - frame_len * generate_frame_num - 1 | |
guider_seq = torch.tensor( | |
guider_seq, dtype=torch.long, | |
device=self.device).unsqueeze(0).repeat( | |
generate_batchsize_total, 1) | |
for sample_i in range(sample_num): | |
for i in range(generate_batchsize_persample): | |
guider_seq[sample_i * generate_batchsize_persample + | |
i][text_len + 1:text_len + 1 + | |
400] = parent_given_tokens[sample_i][2 * | |
i] | |
guider_seq[sample_i * generate_batchsize_persample + | |
i][text_len + 1 + 400:text_len + 1 + | |
800] = parent_given_tokens[sample_i][2 * | |
i + | |
1] | |
guider_seq[sample_i * generate_batchsize_persample + | |
i][text_len + 1 + 800:text_len + 1 + | |
1200] = parent_given_tokens[sample_i][2 * | |
i + | |
2] | |
video_log_text_attention_weights = 0 | |
else: | |
guider_seq = None | |
guider_text_len = 0 | |
video_log_text_attention_weights = 1.4 | |
mbz = self.args.max_inference_batch_size | |
assert generate_batchsize_total < mbz or generate_batchsize_total % mbz == 0 | |
output_list = [] | |
start_time = time.perf_counter() | |
for tim in range(max(generate_batchsize_total // mbz, 1)): | |
input_seq = seq[:min(generate_batchsize_total, mbz)].clone( | |
) if tim == 0 else seq[mbz * tim:mbz * (tim + 1)].clone() | |
guider_seq2 = ( | |
guider_seq[:min(generate_batchsize_total, mbz)].clone() | |
if tim == 0 else guider_seq[mbz * tim:mbz * | |
(tim + 1)].clone() | |
) if guider_seq is not None else None | |
output_list.append( | |
my_filling_sequence( | |
model, | |
tokenizer, | |
self.args, | |
input_seq, | |
batch_size=min(generate_batchsize_total, mbz), | |
get_masks_and_position_ids= | |
get_masks_and_position_ids_stage2, | |
text_len=text_len, | |
frame_len=frame_len, | |
strategy=self.strategy_cogview2, | |
strategy2=self.strategy_cogvideo, | |
log_text_attention_weights= | |
video_log_text_attention_weights, | |
mode_stage1=False, | |
guider_seq=guider_seq2, | |
guider_text_len=guider_text_len, | |
guidance_alpha=self.args.guidance_alpha, | |
limited_spatial_channel_mem=True, | |
)[0]) | |
elapsed = time.perf_counter() - start_time | |
logger.info(f'Duration {duration:.2f}, Elapsed: {elapsed:.2f}\n') | |
output_tokens = torch.cat(output_list, dim=0) | |
output_tokens = output_tokens[:, text_len + 1:text_len + 1 + | |
(total_frames) * 400].reshape( | |
sample_num, -1, | |
400 * total_frames) | |
output_tokens_merge = torch.cat( | |
(output_tokens[:, :, :1 * 400], output_tokens[:, :, | |
400 * 3:4 * 400], | |
output_tokens[:, :, 400 * 1:2 * 400], | |
output_tokens[:, :, 400 * 4:(total_frames) * 400]), | |
dim=2).reshape(sample_num, -1, 400) | |
output_tokens_merge = torch.cat( | |
(output_tokens_merge, output_tokens[:, -1:, 400 * 2:3 * 400]), | |
dim=1) | |
duration /= 2 | |
parent_given_tokens = output_tokens_merge | |
if self.args.both_stages: | |
move_start_time = time.perf_counter() | |
logger.debug('moving stage 2 model to cpu') | |
model = model.cpu() | |
torch.cuda.empty_cache() | |
elapsed = time.perf_counter() - move_start_time | |
logger.debug(f'moving out model2 takes time: {elapsed:.2f}') | |
elapsed = time.perf_counter() - stage2_start_time | |
logger.info(f'CogVideo Stage2 completed. Elapsed: {elapsed:.2f}\n') | |
# direct super-resolution by CogView2 | |
logger.info('[Direct super-resolution]') | |
dsr_start_time = time.perf_counter() | |
enc_text = tokenizer.encode(seq_text) | |
frame_num_per_sample = parent_given_tokens.shape[1] | |
parent_given_tokens_2d = parent_given_tokens.reshape(-1, 400) | |
text_seq = torch.tensor(enc_text, dtype=torch.long, | |
device=self.device).unsqueeze(0).repeat( | |
parent_given_tokens_2d.shape[0], 1) | |
sred_tokens = self.dsr(text_seq, parent_given_tokens_2d) | |
decoded_sr_videos = [] | |
for sample_i in range(sample_num): | |
decoded_sr_imgs = [] | |
for frame_i in range(frame_num_per_sample): | |
decoded_sr_img = tokenizer.decode( | |
image_ids=sred_tokens[frame_i + sample_i * | |
frame_num_per_sample][-3600:]) | |
decoded_sr_imgs.append( | |
self.postprocess( | |
torch.nn.functional.interpolate(decoded_sr_img, | |
size=(480, 480))[0])) | |
decoded_sr_videos.append(decoded_sr_imgs) | |
elapsed = time.perf_counter() - dsr_start_time | |
logger.info( | |
f'Direct super-resolution completed. Elapsed: {elapsed:.2f}') | |
elapsed = time.perf_counter() - process_start_time | |
logger.info(f'--- done ({elapsed=:.3f}) ---') | |
return True, decoded_sr_videos[0] | |
def postprocess(tensor: torch.Tensor) -> np.ndarray: | |
return tensor.cpu().mul(255).add_(0.5).clamp_(0, 255).permute( | |
1, 2, 0).to(torch.uint8).numpy() | |
def run(self, text: str, seed: int, | |
only_first_stage: bool) -> list[np.ndarray]: | |
logger.info('==================== run ====================') | |
start = time.perf_counter() | |
set_random_seed(seed) | |
self.args.seed = seed | |
if only_first_stage: | |
self.args.stage_1 = True | |
self.args.both_stages = False | |
else: | |
self.args.stage_1 = False | |
self.args.both_stages = True | |
parent_given_tokens, res = self.process_stage1( | |
self.model_stage1, | |
text, | |
duration=4.0, | |
video_raw_text=text, | |
video_guidance_text='视频', | |
image_text_suffix=' 高清摄影', | |
batch_size=self.args.batch_size) | |
if not only_first_stage: | |
_, res = self.process_stage2( | |
self.model_stage2, | |
text, | |
duration=2.0, | |
parent_given_tokens=parent_given_tokens, | |
video_raw_text=text + ' 视频', | |
video_guidance_text='视频', | |
gpu_rank=0, | |
gpu_parallel_size=1) # TODO: 修改 | |
elapsed = time.perf_counter() - start | |
logger.info(f'Elapsed: {elapsed:.3f}') | |
logger.info('==================== done ====================') | |
return res | |
class AppModel(Model): | |
def __init__(self, only_first_stage: bool): | |
super().__init__(only_first_stage) | |
self.translator = gr.Interface.load( | |
'spaces/chinhon/translation_eng2ch') | |
def to_video(self, frames: list[np.ndarray]) -> str: | |
out_file = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) | |
if self.args.stage_1: | |
fps = 4 | |
else: | |
fps = 8 | |
writer = iio.get_writer(out_file.name, fps=fps) | |
for frame in frames: | |
writer.append_data(frame) | |
writer.close() | |
return out_file.name | |
def run_with_translation( | |
self, text: str, translate: bool, seed: int, only_first_stage: bool | |
) -> tuple[str | None, str | None, list[np.ndarray] | None]: | |
logger.info(f'{text=}, {translate=}, {seed=}, {only_first_stage=}') | |
if translate: | |
text = translated_text = self.translator(text) | |
else: | |
translated_text = None | |
frames = self.run(text, seed, only_first_stage) | |
video_path = self.to_video(frames) | |
return translated_text, video_path | |