Spaces:
Runtime error
Runtime error
import os | |
import warnings | |
import shutil | |
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig, BitsAndBytesConfig | |
import torch | |
from oryx.model import * | |
from oryx.constants import DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN | |
def load_pretrained_model(model_path, model_base, model_name, load_8bit=False, load_4bit=False, device_map="auto", overwrite_config=None): | |
kwargs = {"device_map": device_map} | |
if load_8bit: | |
kwargs["load_in_8bit"] = True | |
elif load_4bit: | |
kwargs["load_in_4bit"] = True | |
kwargs["quantization_config"] = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4") | |
else: | |
kwargs["torch_dtype"] = torch.bfloat16 | |
if "oryx" in model_name.lower(): | |
# Load Oryx model | |
if "7b" in model_name.lower(): | |
from oryx.model.language_model.oryx_qwen import OryxQwenConfig | |
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False) | |
if overwrite_config is not None: | |
cfg_pretrained = OryxQwenConfig.from_pretrained(model_path) | |
print(f"Overwriting config with {overwrite_config}") | |
for k, v in overwrite_config.items(): | |
setattr(cfg_pretrained, k, v) | |
model = OryxQwenForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs) | |
else: | |
model = OryxQwenForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs) | |
else: | |
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False) | |
cfg_pretrained = AutoConfig.from_pretrained(model_path) | |
if overwrite_config is not None: | |
print(f"Overwriting config with {overwrite_config}") | |
for k, v in overwrite_config.items(): | |
setattr(cfg_pretrained, k, v) | |
model = OryxLlamaForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs) | |
else: | |
# Load language model | |
if model_base is not None: | |
# PEFT model | |
from peft import PeftModel | |
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) | |
model = AutoModelForCausalLM.from_pretrained(model_base, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, device_map="auto") | |
print(f"Loading LoRA weights from {model_path}") | |
model = PeftModel.from_pretrained(model, model_path) | |
print(f"Merging weights") | |
model = model.merge_and_unload() | |
print("Convert to FP16...") | |
model.to(torch.bfloat16) | |
else: | |
use_fast = False | |
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False) | |
model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs) | |
image_processor = None | |
assert "oryx" in model_name.lower(), "Only Oryx models are supported for video chatbot." | |
mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False) | |
mm_use_im_patch_token = getattr(model.config, "mm_use_im_patch_token", True) | |
if mm_use_im_patch_token: | |
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) | |
if mm_use_im_start_end: | |
tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True) | |
model.resize_token_embeddings(len(tokenizer)) | |
vision_tower = model.get_vision_tower() | |
print("Loading vision tower...") | |
if not vision_tower.is_loaded: | |
vision_tower.load_model(device_map=device_map) | |
if device_map != "auto": | |
vision_tower.to(device="cuda", dtype=torch.bfloat16) | |
else: | |
vision_tower.to(device="cuda:0", dtype=torch.bfloat16) | |
image_processor = vision_tower.image_processor | |
print("Loading vision tower succeeded.") | |
if hasattr(model.config, "max_sequence_length"): | |
context_len = model.config.max_sequence_length | |
else: | |
context_len = 2048 | |
return tokenizer, model, image_processor, context_len | |