""" Clean chatbot arena battle log. Usage: python3 clean_battle_data.py --mode conv_release """ import argparse import datetime import json import os import sys from pytz import timezone import time import PIL from PIL import ImageFile ImageFile.LOAD_TRUNCATED_IMAGES = True from tqdm import tqdm from .basic_stats import get_log_files, NUM_SERVERS, LOG_ROOT_DIR from .utils import detect_language, get_time_stamp_from_date VOTES = ["tievote", "leftvote", "rightvote", "bothbad_vote"] IDENTITY_WORDS = [ "vicuna", "lmsys", "koala", "uc berkeley", "open assistant", "laion", "chatglm", "chatgpt", "gpt-4", "openai", "anthropic", "claude", "bard", "palm", "lamda", "google", "llama", "qianwan", "alibaba", "mistral", "zhipu", "KEG lab", "01.AI", "AI2", "Tülu", "Tulu", "NETWORK ERROR DUE TO HIGH TRAFFIC. PLEASE REGENERATE OR REFRESH THIS PAGE.", "$MODERATION$ YOUR INPUT VIOLATES OUR CONTENT MODERATION GUIDELINES.", "API REQUEST ERROR. Please increase the number of max tokens.", "**API REQUEST ERROR** Reason: The response was blocked.", "**API REQUEST ERROR**", ] for i in range(len(IDENTITY_WORDS)): IDENTITY_WORDS[i] = IDENTITY_WORDS[i].lower() def remove_html(raw): if raw.startswith("

"): return raw[raw.find(": ") + 2 : -len("

\n")] if raw.startswith("### Model A: ") or raw.startswith("### Model B: "): return raw[13:] return raw def to_openai_format(messages): roles = ["user", "assistant"] ret = [] for i, x in enumerate(messages): ret.append({"role": roles[i % 2], "content": x[1]}) return ret def replace_model_name(old_name, tstamp): replace_dict = { "bard": "palm-2", "claude-v1": "claude-1", "claude-instant-v1": "claude-instant-1", "oasst-sft-1-pythia-12b": "oasst-pythia-12b", "claude-2": "claude-2.0", "PlayGroundV2": "Playground v2", } if old_name in ["gpt-4", "gpt-3.5-turbo"]: if tstamp > 1687849200: return old_name + "-0613" else: return old_name + "-0314" if old_name in replace_dict: return replace_dict[old_name] return old_name def read_file(filename): data = [] for retry in range(5): try: # lines = open(filename).readlines() for l in open(filename): row = json.loads(l) if row["type"] in VOTES: data.append(row) break except FileNotFoundError: time.sleep(2) except json.JSONDecodeError: print(f"Error in reading {filename}") print(row) exit(0) return data def read_file_parallel(log_files, num_threads=16): data_all = [] from multiprocessing import Pool with Pool(num_threads) as p: ret_all = list(tqdm(p.imap(read_file, log_files), total=len(log_files))) for ret in ret_all: data_all.extend(ret) return data_all def load_image(image_path): try: return PIL.Image.open(image_path) except: return None def clean_battle_data( log_files, exclude_model_names, ban_ip_list=None, sanitize_ip=False, mode="simple", task_name="image_editing" ): data = read_file_parallel(log_files, num_threads=16) convert_type = { "leftvote": "model_a", "rightvote": "model_b", "tievote": "tie", "bothbad_vote": "tie (bothbad)", } all_models = set() all_ips = dict() ct_anony = 0 ct_invalid = 0 ct_leaked_identity = 0 ct_banned = 0 battles = [] for row in tqdm(data, desc="Cleaning"): if row["models"][0] is None or row["models"][1] is None: continue # Resolve model names models_public = [remove_html(row["models"][0]), remove_html(row["models"][1])] if "model_name" in row["states"][0]: models_hidden = [ row["states"][0]["model_name"], row["states"][1]["model_name"], ] if models_hidden[0] is None: models_hidden = models_public else: models_hidden = models_public if (models_public[0] == "" and models_public[1] != "") or ( models_public[1] == "" and models_public[0] != "" ): ct_invalid += 1 continue if models_public[0] == "" or models_public[0] == "Model A": anony = True models = models_hidden ct_anony += 1 else: anony = False models = models_public if not models_public == models_hidden: ct_invalid += 1 continue # # Detect langauge # state = row["states"][0] # if state["offset"] >= len(state["messages"]): # ct_invalid += 1 # continue # lang_code = detect_language(state["messages"][state["offset"]][1]) # # Drop conversations if the model names are leaked # leaked_identity = False # messages = "" # for i in range(2): # state = row["states"][i] # for turn_idx, (role, msg) in enumerate( # state["messages"][state["offset"] :] # ): # if msg: # messages += msg.lower() # for word in IDENTITY_WORDS: # if word in messages: # leaked_identity = True # break # if leaked_identity: # ct_leaked_identity += 1 # continue def preprocess_model_name(m): if m == "Playground v2": return 'playground_PlayGroundV2_generation' if m == "Playground v2.5": return 'playground_PlayGroundV2.5_generation' return m models = [preprocess_model_name(m) for m in models] # Replace bard with palm if task_name == "image_editing": valid = True for _model in models: try: platform, model_name, task = _model.split("_") except ValueError: print(f"Invalid model names: {_model}") valid = False break if not platform in ["playground", "imagenhub"] and task == "edition": valid = False break if not valid: print(f"Invalid model names: {models}") ct_invalid += 1 continue for i, _model in enumerate(models): platform, model_name, task = _model.split("_") models[i] = model_name # if not all(x.startswith("imagenhub_") and x.endswith("_edition") for x in models): # # print(f"Invalid model names: {models}") # ct_invalid += 1 # continue # models = [x[len("imagenhub_"):-len("_edition")] for x in models] elif task_name == "t2i_generation": valid = True for _model in models: try: platform, model_name, task = _model.split("_") except ValueError: print(f"Invalid model names: {_model}") valid = False break if not platform in ["playground", "imagenhub"] and task == "generation": valid = False break if not valid: print(f"Invalid model names: {models}") ct_invalid += 1 continue for i, _model in enumerate(models): platform, model_name, task = _model.split("_") models[i] = model_name # if not all("playground" in x.lower() or (x.startswith("imagenhub_") and x.endswith("_generation")) for x in models): # print(f"Invalid model names: {models}") # ct_invalid += 1 # continue # models = [x[len("imagenhub_"):-len("_generation")] for x in models] # for i, model_name in enumerate(models): # mode # if model_name.startswith("imagenhub_"): # models[i] = model_name[len("imagenhub_"):-len("_generation")] else: raise ValueError(f"Invalid task_name: {task_name}") models = [replace_model_name(m, row["tstamp"]) for m in models] # Exclude certain models if exclude_model_names and any(x in exclude_model_names for x in models): ct_invalid += 1 continue # if models[0] not in model_infos or models[1] not in model_infos: # continue # # Exclude votes before the starting date # if model_infos and (model_infos[models[0]]["starting_from"] > row["tstamp"] or model_infos[models[1]]["starting_from"] > row["tstamp"]): # print(f"Invalid vote before the valid starting date for {models[0]} and {models[1]}") # ct_invalid += 1 # continue if mode == "conv_release": # assert the two images are the same date = datetime.datetime.fromtimestamp(row["tstamp"], tz=timezone("US/Pacific")).strftime("%Y-%m-%d") # 2024-02-29 image_path_format = f"{LOG_ROOT_DIR}/{date}-convinput_images/input_image_" image_path_0 = image_path_format + str(row["states"][0]["conv_id"]) + ".png" image_path_1 = image_path_format + str(row["states"][1]["conv_id"]) + ".png" if not os.path.exists(image_path_0) or not os.path.exists(image_path_1): print(f"Image not found for {image_path_0} or {image_path_1}") ct_invalid += 1 continue image_0 = load_image(image_path_0) image_1 = load_image(image_path_1) if image_0 is None or image_1 is None: print(f"Image not found for {image_path_0} or {image_path_1}") ct_invalid += 1 continue if image_0.tobytes() != image_1.tobytes(): print(f"Image not the same for {image_path_0} and {image_path_1}") ct_invalid += 1 continue question_id = row["states"][0]["conv_id"] # conversation_a = to_openai_format( # row["states"][0]["messages"][row["states"][0]["offset"] :] # ) # conversation_b = to_openai_format( # row["states"][1]["messages"][row["states"][1]["offset"] :] # ) ip = row["ip"] if ip not in all_ips: all_ips[ip] = {"ip": ip, "count": 0, "sanitized_id": len(all_ips)} all_ips[ip]["count"] += 1 if sanitize_ip: user_id = f"arena_user_{all_ips[ip]['sanitized_id']}" else: user_id = f"{all_ips[ip]['ip']}" if ban_ip_list is not None and ip in ban_ip_list: ct_banned += 1 continue # Save the results battles.append( dict( question_id=question_id, model_a=models[0], model_b=models[1], winner=convert_type[row["type"]], judge=f"arena_user_{user_id}", # conversation_a=conversation_a, # conversation_b=conversation_b, # turn=len(conversation_a) // 2, anony=anony, # language=lang_code, tstamp=row["tstamp"], ) ) all_models.update(models_hidden) battles.sort(key=lambda x: x["tstamp"]) last_updated_tstamp = battles[-1]["tstamp"] last_updated_datetime = datetime.datetime.fromtimestamp( last_updated_tstamp, tz=timezone("US/Pacific") ).strftime("%Y-%m-%d %H:%M:%S %Z") print( f"#votes: {len(data)}, #invalid votes: {ct_invalid}, " f"#leaked_identity: {ct_leaked_identity} " f"#banned: {ct_banned} " ) print(f"#battles: {len(battles)}, #anony: {ct_anony}") print(f"#models: {len(all_models)}, {all_models}") print(f"last-updated: {last_updated_datetime}") if ban_ip_list is not None: for ban_ip in ban_ip_list: if ban_ip in all_ips: del all_ips[ban_ip] print("Top 30 IPs:") print(sorted(all_ips.values(), key=lambda x: x["count"], reverse=True)[:30]) return battles if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--max-num-files", type=int) parser.add_argument( "--mode", type=str, choices=["simple", "conv_release"], default="simple" ) parser.add_argument("--task_name", type=str, default="image_editing", choices=["image_editing", "t2i_generation"]) parser.add_argument("--exclude-model-names", type=str, nargs="+") parser.add_argument("--ban-ip-file", type=str) parser.add_argument("--sanitize-ip", action="store_true", default=False) args = parser.parse_args() log_files = get_log_files(args.max_num_files) ban_ip_list = json.load(open(args.ban_ip_file)) if args.ban_ip_file else None battles = clean_battle_data( log_files, args.exclude_model_names or [], ban_ip_list, args.sanitize_ip, args.mode, args.task_name ) last_updated_tstamp = battles[-1]["tstamp"] cutoff_date = datetime.datetime.fromtimestamp( last_updated_tstamp, tz=timezone("US/Pacific") ).strftime("%Y%m%d") if args.mode == "simple": for x in battles: for key in [ "conversation_a", "conversation_b", "question_id", ]: if key in x: del x[key] print("Samples:") for i in range(min(4, len(battles))): print(battles[i]) output = f"clean_battle_{args.task_name}_{cutoff_date}.json" elif args.mode == "conv_release": # new_battles = [] # for x in battles: # if not x["anony"]: # continue # for key in []: # del x[key] # new_battles.append(x) # battles = new_battles output = f"clean_battle_{args.task_name}_conv_{cutoff_date}.json" with open(output, "w") as fout: json.dump(battles, fout, indent=2, ensure_ascii=False) print(f"Write cleaned data to {output}") with open("cut_off_date.txt", "w") as fout: fout.write(cutoff_date)