File size: 9,103 Bytes
2016488
6ae8aba
2016488
 
 
ba1590f
2016488
 
ba1590f
 
2016488
 
 
a84b286
6ae8aba
 
 
 
2016488
 
 
 
64dcfc0
392edcb
6ae8aba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a84b286
6ae8aba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fe97ad
6ae8aba
 
 
 
5fe97ad
6ae8aba
 
 
 
5fe97ad
6ae8aba
 
392edcb
2016488
a84b286
 
 
 
 
 
 
 
 
 
 
 
 
64dcfc0
392edcb
64dcfc0
a84b286
74aafd0
a84b286
74aafd0
 
 
 
 
 
 
6ae8aba
64dcfc0
392edcb
64dcfc0
74aafd0
64dcfc0
74aafd0
 
 
 
 
 
 
 
64dcfc0
392edcb
64dcfc0
74aafd0
64dcfc0
74aafd0
 
 
 
 
 
 
 
392edcb
 
74aafd0
 
 
392edcb
 
2016488
 
 
392edcb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74aafd0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
from utils import *
import utils_v2 as v2

global data_component

def update_table(query, min_size, max_size, selected_tasks=None):
    df = get_df()
    filtered_df = search_and_filter_models(df, query, min_size, max_size)
    if selected_tasks and len(selected_tasks) > 0:
        selected_columns = BASE_COLS + selected_tasks
        filtered_df = filtered_df[selected_columns]
    return filtered_df

def update_table_v2(query, min_size, max_size):
    df = v2.get_df()
    filtered_df = v2.search_and_filter_models(df, query, min_size, max_size)
    return filtered_df

with gr.Blocks() as block:
    gr.Markdown(LEADERBOARD_INTRODUCTION)
    
    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        # Table 1, the main leaderboard of overall scores
        with gr.TabItem("πŸ“Š MMEB (V2)", elem_id="qa-tab-table1", id=1):
            with gr.Row():
                with gr.Accordion("Citation", open=False):
                    citation_button2 = gr.Textbox(
                        value=v2.CITATION_BUTTON_TEXT,
                        label=CITATION_BUTTON_LABEL,
                        elem_id="citation-button",
                        lines=10,
                    )
            gr.Markdown(v2.TABLE_INTRODUCTION)

            with gr.Row():
                search_bar2 = gr.Textbox(
                    placeholder="Search models...",
                    show_label=False,
                    elem_id="search-bar"
                )
            
            df = get_df()
            df2 = v2.get_df()
            min_size2, max_size2 = get_size_range(df2)

            with gr.Row():
                min_size_slider2 = gr.Slider(
                    minimum=min_size2,
                    maximum=max_size2,
                    value=min_size2,
                    step=0.1,
                    label="Minimum number of parameters (B)",
                )
                max_size_slider2 = gr.Slider(
                    minimum=min_size2,
                    maximum=max_size2,
                    value=max_size2,
                    step=0.1,
                    label="Maximum number of parameters (B)",
                )
            data_component2 = gr.components.Dataframe(
                value=df2[v2.COLUMN_NAMES],
                headers=v2.COLUMN_NAMES,
                type="pandas",
                datatype=v2.DATA_TITLE_TYPE,
                interactive=False,
                visible=True,
                max_height=2400, 
            )
            
            refresh_button2 = gr.Button("Refresh")
            
            def update_with_tasks_v2(*args):
                return update_table_v2(*args)

            search_bar2.change(
                fn=update_with_tasks_v2, 
                inputs=[search_bar2, min_size_slider2, max_size_slider2], 
                outputs=data_component2
            )
            min_size_slider2.change(
                fn=update_with_tasks_v2, 
                inputs=[search_bar2, min_size_slider2, max_size_slider2], 
                outputs=data_component2
            )
            max_size_slider2.change(
                fn=update_with_tasks_v2, 
                inputs=[search_bar2, min_size_slider2, max_size_slider2], 
                outputs=data_component2
            )
            refresh_button2.click(fn=v2.refresh_data, outputs=data_component2)


        def get_special_processed_df2():
            """Temporary special processing to merge v1 scores with v2 image scores.
            Will be removed later after v2 is fully adopted."""
            df2_i = df2[v2.COLUMN_NAMES_I]
            df1 = df.rename(columns={'V1-Overall': 'Image-Overall'})
            df1 = df1[v2.BASE_COLS + v2.SUB_TASKS_I + ['Image-Overall']]
            combined_df = pd.concat([df1, df2_i], ignore_index=True)
            for task in v2.TASKS_I:
                combined_df[task] = combined_df[task].apply(lambda score: '-' if pd.isna(score) else score)
            combined_df = v2.rank_models(combined_df, 'Image-Overall')
            return combined_df[v2.COLUMN_NAMES_I]

        # table 2, image scores only
        with gr.TabItem("πŸ–ΌοΈ Image", elem_id="qa-tab-table1", id=2):
            gr.Markdown(v2.TABLE_INTRODUCTION_I)
            df2_i = get_special_processed_df2()
            data_component3 = gr.components.Dataframe(
                value=df2_i,
                headers=v2.COLUMN_NAMES_I,
                type="pandas",
                datatype=v2.DATA_TITLE_TYPE_I,
                interactive=False,
                visible=True,
                max_height=2400, 
            )

        # table 3, video scores only
        with gr.TabItem("πŸ’½ Video", elem_id="qa-tab-table1", id=3):
            gr.Markdown(v2.TABLE_INTRODUCTION_V)
            data_component4 = gr.components.Dataframe(
                value=v2.rank_models(df2[v2.COLUMN_NAMES_V], 'Video-Overall'),
                headers=v2.COLUMN_NAMES_V,
                type="pandas",
                datatype=v2.DATA_TITLE_TYPE_V,
                interactive=False,
                visible=True,
                max_height=2400, 
            )

        # table 4, visual document scores only
        with gr.TabItem("πŸ“‘ Visual Doc", elem_id="qa-tab-table1", id=4):
            gr.Markdown(v2.TABLE_INTRODUCTION_D)
            data_component5 = gr.components.Dataframe(
                value=v2.rank_models(df2[v2.COLUMN_NAMES_D], 'VisDoc'),
                headers=v2.COLUMN_NAMES_D,
                type="pandas",
                datatype=v2.DATA_TITLE_TYPE_D,
                interactive=False,
                visible=True,
                max_height=2400, 
            )

        # table 5
        with gr.TabItem("πŸ“ About", elem_id="qa-tab-table2", id=5):
            gr.Markdown(LEADERBOARD_INFO, elem_classes="markdown-text")
            gr.Image("overview.png", width=900, label="Dataset Overview")

        # table 6
        with gr.TabItem("πŸš€ Submit here! ", elem_id="submit-tab", id=6):
            with gr.Row():
                gr.Markdown(SUBMIT_INTRODUCTION, elem_classes="markdown-text")

        # table 7
        with gr.TabItem("πŸ“Š MMEB (Archived)", elem_id="qa-tab-table1", id=7):
            with gr.Row():
                with gr.Accordion("Citation", open=False):
                    citation_button = gr.Textbox(
                        value=CITATION_BUTTON_TEXT,
                        label=CITATION_BUTTON_LABEL,
                        elem_id="citation-button",
                        lines=10,
                    )
            gr.Markdown(TABLE_INTRODUCTION)

            with gr.Row():
                search_bar = gr.Textbox(
                    placeholder="Search models...",
                    show_label=False,
                    elem_id="search-bar"
                )
            
            min_size, max_size = get_size_range(df)

            with gr.Row():
                min_size_slider = gr.Slider(
                    minimum=min_size,
                    maximum=max_size,
                    value=min_size,
                    step=0.1,
                    label="Minimum number of parameters (B)",
                )
                max_size_slider = gr.Slider(
                    minimum=min_size,
                    maximum=max_size,
                    value=max_size,
                    step=0.1,
                    label="Maximum number of parameters (B)",
                )

            with gr.Row():
                tasks_select = gr.CheckboxGroup(
                    choices=TASKS_V1,
                    value=TASKS_V1,
                    label="Select tasks to Display",
                    elem_id="tasks-select"
                )

            data_component = gr.components.Dataframe(
                value=df[COLUMN_NAMES],
                headers=COLUMN_NAMES,
                type="pandas",
                datatype=DATA_TITLE_TYPE,
                interactive=False,
                visible=True,
                max_height=2400, 
            )
            
            refresh_button = gr.Button("Refresh")
            
            def update_with_tasks(*args):
                return update_table(*args)

            search_bar.change(
                fn=update_with_tasks, 
                inputs=[search_bar, min_size_slider, max_size_slider, tasks_select], 
                outputs=data_component
            )
            min_size_slider.change(
                fn=update_with_tasks, 
                inputs=[search_bar, min_size_slider, max_size_slider, tasks_select], 
                outputs=data_component
            )
            max_size_slider.change(
                fn=update_with_tasks, 
                inputs=[search_bar, min_size_slider, max_size_slider, tasks_select], 
                outputs=data_component
            )
            tasks_select.change(
                fn=update_with_tasks, 
                inputs=[search_bar, min_size_slider, max_size_slider, tasks_select], 
                outputs=data_component
            )
            refresh_button.click(fn=refresh_data, outputs=data_component)


block.launch(share=True)