MINGYISU commited on
Commit
6409e30
Β·
1 Parent(s): 9c839c6

fixed errors

Browse files
Files changed (2) hide show
  1. app.py +16 -8
  2. utils_v2.py +22 -2
app.py CHANGED
@@ -11,6 +11,14 @@ def update_table(query, min_size, max_size, selected_tasks=None):
11
  filtered_df = filtered_df[selected_columns]
12
  return filtered_df
13
 
 
 
 
 
 
 
 
 
14
  with gr.Blocks() as block:
15
  gr.Markdown(LEADERBOARD_INTRODUCTION)
16
 
@@ -101,7 +109,7 @@ with gr.Blocks() as block:
101
  with gr.TabItem("πŸ“Š MMEB-V2", elem_id="qa-tab-table1", id=2):
102
  with gr.Row():
103
  with gr.Accordion("Citation", open=False):
104
- citation_button = gr.Textbox(
105
  value=v2.CITATION_BUTTON_TEXT,
106
  label=CITATION_BUTTON_LABEL,
107
  elem_id="citation-button",
@@ -155,30 +163,30 @@ with gr.Blocks() as block:
155
 
156
  refresh_button2 = gr.Button("Refresh")
157
 
158
- # def update_with_tasks(*args):
159
- # return update_table(*args)
160
 
161
  search_bar2.change(
162
- fn=update_with_tasks,
163
  inputs=[search_bar2, min_size_slider2, max_size_slider2, tasks_select2],
164
  outputs=data_component2
165
  )
166
  min_size_slider2.change(
167
- fn=update_with_tasks,
168
  inputs=[search_bar2, min_size_slider2, max_size_slider2, tasks_select2],
169
  outputs=data_component2
170
  )
171
  max_size_slider2.change(
172
- fn=update_with_tasks,
173
  inputs=[search_bar2, min_size_slider2, max_size_slider2, tasks_select2],
174
  outputs=data_component2
175
  )
176
  tasks_select2.change(
177
- fn=update_with_tasks,
178
  inputs=[search_bar2, min_size_slider2, max_size_slider2, tasks_select2],
179
  outputs=data_component2
180
  )
181
- # refresh_button.click(fn=refresh_data, outputs=data_component)
182
 
183
  # table 3
184
  with gr.TabItem("πŸ“ About", elem_id="qa-tab-table2", id=3):
 
11
  filtered_df = filtered_df[selected_columns]
12
  return filtered_df
13
 
14
+ def update_table_v2(query, min_size, max_size, selected_tasks=None):
15
+ df = v2.get_df()
16
+ filtered_df = v2.search_and_filter_models(df, query, min_size, max_size)
17
+ if selected_tasks and len(selected_tasks) > 0:
18
+ selected_columns = v2.BASE_COLS + selected_tasks
19
+ filtered_df = filtered_df[selected_columns]
20
+ return filtered_df
21
+
22
  with gr.Blocks() as block:
23
  gr.Markdown(LEADERBOARD_INTRODUCTION)
24
 
 
109
  with gr.TabItem("πŸ“Š MMEB-V2", elem_id="qa-tab-table1", id=2):
110
  with gr.Row():
111
  with gr.Accordion("Citation", open=False):
112
+ citation_button2 = gr.Textbox(
113
  value=v2.CITATION_BUTTON_TEXT,
114
  label=CITATION_BUTTON_LABEL,
115
  elem_id="citation-button",
 
163
 
164
  refresh_button2 = gr.Button("Refresh")
165
 
166
+ def update_with_tasks_v2(*args):
167
+ return update_table_v2(*args)
168
 
169
  search_bar2.change(
170
+ fn=update_with_tasks_v2,
171
  inputs=[search_bar2, min_size_slider2, max_size_slider2, tasks_select2],
172
  outputs=data_component2
173
  )
174
  min_size_slider2.change(
175
+ fn=update_with_tasks_v2,
176
  inputs=[search_bar2, min_size_slider2, max_size_slider2, tasks_select2],
177
  outputs=data_component2
178
  )
179
  max_size_slider2.change(
180
+ fn=update_with_tasks_v2,
181
  inputs=[search_bar2, min_size_slider2, max_size_slider2, tasks_select2],
182
  outputs=data_component2
183
  )
184
  tasks_select2.change(
185
+ fn=update_with_tasks_v2,
186
  inputs=[search_bar2, min_size_slider2, max_size_slider2, tasks_select2],
187
  outputs=data_component2
188
  )
189
+ refresh_button.click(fn=v2.refresh_data, outputs=data_component)
190
 
191
  # table 3
192
  with gr.TabItem("πŸ“ About", elem_id="qa-tab-table2", id=3):
utils_v2.py CHANGED
@@ -71,7 +71,9 @@ def calculate_score(raw_scores=None):
71
  Algorithm summary:
72
  """
73
  def get_avg(sum_score, leng):
74
- return sum_score / leng if leng > 0 else 0.0
 
 
75
 
76
  avg_scores = {}
77
  overall_scores_summary = {} # Stores the scores sum and length for each modality and all datasets
@@ -126,4 +128,22 @@ def get_df():
126
  df['Rank'] = range(1, len(df) + 1)
127
  df = create_hyperlinked_names(df)
128
 
129
- return df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71
  Algorithm summary:
72
  """
73
  def get_avg(sum_score, leng):
74
+ avg = sum_score / leng if leng > 0 else 0.0
75
+ avg = round(avg, 2) # Round to 2 decimal places
76
+ return avg
77
 
78
  avg_scores = {}
79
  overall_scores_summary = {} # Stores the scores sum and length for each modality and all datasets
 
128
  df['Rank'] = range(1, len(df) + 1)
129
  df = create_hyperlinked_names(df)
130
 
131
+ return df
132
+
133
+ def refresh_data():
134
+ df = get_df()
135
+ return df[COLUMN_NAMES]
136
+
137
+ def search_and_filter_models(df, query, min_size, max_size):
138
+ filtered_df = df.copy()
139
+
140
+ if query:
141
+ filtered_df = filtered_df[filtered_df['Models'].str.contains(query, case=False, na=False)]
142
+
143
+ size_mask = filtered_df['Model Size(B)'].apply(lambda x:
144
+ (min_size <= 1000.0 <= max_size) if x == 'unknown'
145
+ else (min_size <= x <= max_size))
146
+
147
+ filtered_df = filtered_df[size_mask]
148
+
149
+ return filtered_df[COLUMN_NAMES]