Spaces:
Running
Running
fixed errors
Browse files- app.py +16 -8
- utils_v2.py +22 -2
app.py
CHANGED
@@ -11,6 +11,14 @@ def update_table(query, min_size, max_size, selected_tasks=None):
|
|
11 |
filtered_df = filtered_df[selected_columns]
|
12 |
return filtered_df
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
with gr.Blocks() as block:
|
15 |
gr.Markdown(LEADERBOARD_INTRODUCTION)
|
16 |
|
@@ -101,7 +109,7 @@ with gr.Blocks() as block:
|
|
101 |
with gr.TabItem("π MMEB-V2", elem_id="qa-tab-table1", id=2):
|
102 |
with gr.Row():
|
103 |
with gr.Accordion("Citation", open=False):
|
104 |
-
|
105 |
value=v2.CITATION_BUTTON_TEXT,
|
106 |
label=CITATION_BUTTON_LABEL,
|
107 |
elem_id="citation-button",
|
@@ -155,30 +163,30 @@ with gr.Blocks() as block:
|
|
155 |
|
156 |
refresh_button2 = gr.Button("Refresh")
|
157 |
|
158 |
-
|
159 |
-
|
160 |
|
161 |
search_bar2.change(
|
162 |
-
fn=
|
163 |
inputs=[search_bar2, min_size_slider2, max_size_slider2, tasks_select2],
|
164 |
outputs=data_component2
|
165 |
)
|
166 |
min_size_slider2.change(
|
167 |
-
fn=
|
168 |
inputs=[search_bar2, min_size_slider2, max_size_slider2, tasks_select2],
|
169 |
outputs=data_component2
|
170 |
)
|
171 |
max_size_slider2.change(
|
172 |
-
fn=
|
173 |
inputs=[search_bar2, min_size_slider2, max_size_slider2, tasks_select2],
|
174 |
outputs=data_component2
|
175 |
)
|
176 |
tasks_select2.change(
|
177 |
-
fn=
|
178 |
inputs=[search_bar2, min_size_slider2, max_size_slider2, tasks_select2],
|
179 |
outputs=data_component2
|
180 |
)
|
181 |
-
|
182 |
|
183 |
# table 3
|
184 |
with gr.TabItem("π About", elem_id="qa-tab-table2", id=3):
|
|
|
11 |
filtered_df = filtered_df[selected_columns]
|
12 |
return filtered_df
|
13 |
|
14 |
+
def update_table_v2(query, min_size, max_size, selected_tasks=None):
|
15 |
+
df = v2.get_df()
|
16 |
+
filtered_df = v2.search_and_filter_models(df, query, min_size, max_size)
|
17 |
+
if selected_tasks and len(selected_tasks) > 0:
|
18 |
+
selected_columns = v2.BASE_COLS + selected_tasks
|
19 |
+
filtered_df = filtered_df[selected_columns]
|
20 |
+
return filtered_df
|
21 |
+
|
22 |
with gr.Blocks() as block:
|
23 |
gr.Markdown(LEADERBOARD_INTRODUCTION)
|
24 |
|
|
|
109 |
with gr.TabItem("π MMEB-V2", elem_id="qa-tab-table1", id=2):
|
110 |
with gr.Row():
|
111 |
with gr.Accordion("Citation", open=False):
|
112 |
+
citation_button2 = gr.Textbox(
|
113 |
value=v2.CITATION_BUTTON_TEXT,
|
114 |
label=CITATION_BUTTON_LABEL,
|
115 |
elem_id="citation-button",
|
|
|
163 |
|
164 |
refresh_button2 = gr.Button("Refresh")
|
165 |
|
166 |
+
def update_with_tasks_v2(*args):
|
167 |
+
return update_table_v2(*args)
|
168 |
|
169 |
search_bar2.change(
|
170 |
+
fn=update_with_tasks_v2,
|
171 |
inputs=[search_bar2, min_size_slider2, max_size_slider2, tasks_select2],
|
172 |
outputs=data_component2
|
173 |
)
|
174 |
min_size_slider2.change(
|
175 |
+
fn=update_with_tasks_v2,
|
176 |
inputs=[search_bar2, min_size_slider2, max_size_slider2, tasks_select2],
|
177 |
outputs=data_component2
|
178 |
)
|
179 |
max_size_slider2.change(
|
180 |
+
fn=update_with_tasks_v2,
|
181 |
inputs=[search_bar2, min_size_slider2, max_size_slider2, tasks_select2],
|
182 |
outputs=data_component2
|
183 |
)
|
184 |
tasks_select2.change(
|
185 |
+
fn=update_with_tasks_v2,
|
186 |
inputs=[search_bar2, min_size_slider2, max_size_slider2, tasks_select2],
|
187 |
outputs=data_component2
|
188 |
)
|
189 |
+
refresh_button.click(fn=v2.refresh_data, outputs=data_component)
|
190 |
|
191 |
# table 3
|
192 |
with gr.TabItem("π About", elem_id="qa-tab-table2", id=3):
|
utils_v2.py
CHANGED
@@ -71,7 +71,9 @@ def calculate_score(raw_scores=None):
|
|
71 |
Algorithm summary:
|
72 |
"""
|
73 |
def get_avg(sum_score, leng):
|
74 |
-
|
|
|
|
|
75 |
|
76 |
avg_scores = {}
|
77 |
overall_scores_summary = {} # Stores the scores sum and length for each modality and all datasets
|
@@ -126,4 +128,22 @@ def get_df():
|
|
126 |
df['Rank'] = range(1, len(df) + 1)
|
127 |
df = create_hyperlinked_names(df)
|
128 |
|
129 |
-
return df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
Algorithm summary:
|
72 |
"""
|
73 |
def get_avg(sum_score, leng):
|
74 |
+
avg = sum_score / leng if leng > 0 else 0.0
|
75 |
+
avg = round(avg, 2) # Round to 2 decimal places
|
76 |
+
return avg
|
77 |
|
78 |
avg_scores = {}
|
79 |
overall_scores_summary = {} # Stores the scores sum and length for each modality and all datasets
|
|
|
128 |
df['Rank'] = range(1, len(df) + 1)
|
129 |
df = create_hyperlinked_names(df)
|
130 |
|
131 |
+
return df
|
132 |
+
|
133 |
+
def refresh_data():
|
134 |
+
df = get_df()
|
135 |
+
return df[COLUMN_NAMES]
|
136 |
+
|
137 |
+
def search_and_filter_models(df, query, min_size, max_size):
|
138 |
+
filtered_df = df.copy()
|
139 |
+
|
140 |
+
if query:
|
141 |
+
filtered_df = filtered_df[filtered_df['Models'].str.contains(query, case=False, na=False)]
|
142 |
+
|
143 |
+
size_mask = filtered_df['Model Size(B)'].apply(lambda x:
|
144 |
+
(min_size <= 1000.0 <= max_size) if x == 'unknown'
|
145 |
+
else (min_size <= x <= max_size))
|
146 |
+
|
147 |
+
filtered_df = filtered_df[size_mask]
|
148 |
+
|
149 |
+
return filtered_df[COLUMN_NAMES]
|