MINGYISU commited on
Commit
9ee4757
·
2 Parent(s): 9198f1f 1be4556

merged main

Browse files
Files changed (2) hide show
  1. results.csv +3 -0
  2. utils.py +8 -5
results.csv CHANGED
@@ -24,4 +24,7 @@ VLM2Vec (Qwen2-VL-2B-LoRA-HighRes),2.21,TIGER-Lab,59.3,59.0,49.4,65.4,73.4
24
  LLaVE-7B,8.03,Self-Reported,70.3,65.7,65.4,70.9,91.9
25
  LLaVE-2B,1.95,Self-Reported,65.2,62.1,60.2,65.2,84.9
26
  LLaVE-0.5B,0.894,Self-Reported,59.1,57.4,50.3,59.8,82.9
 
 
 
27
  QQMM-embed,8.297,Self-Reported,72.175,70.07,69.52,71.175,87.075
 
24
  LLaVE-7B,8.03,Self-Reported,70.3,65.7,65.4,70.9,91.9
25
  LLaVE-2B,1.95,Self-Reported,65.2,62.1,60.2,65.2,84.9
26
  LLaVE-0.5B,0.894,Self-Reported,59.1,57.4,50.3,59.8,82.9
27
+ UniME(LLaVA-OneVision-7B-LoRA-Res336),8.03,Self-Reported,70.7,66.8,66.6,70.5,90.9
28
+ UniME(LLaVA-1.6-7B-LoRA-LowRes),7.57,Self-Reported,66.6,60.6,52.9,67.9,85.1
29
+ UniME(Phi-3.5-V-LoRA),4.2,Self-Reported,64.2,54.8,55.9,64.5,81.8
30
  QQMM-embed,8.297,Self-Reported,72.175,70.07,69.52,71.175,87.075
utils.py CHANGED
@@ -40,9 +40,9 @@ All tasks are reformulated as ranking tasks, where the model follows instruction
40
  or a combination of both. MMEB is divided into 20 in-distribution datasets, which can be used for
41
  training, and 16 out-of-distribution datasets, reserved for evaluation.
42
 
43
- The detailed explanation of the benchmark and datasets can be found in our paper: https://doi.org/10.48550/arXiv.2410.05160.
44
- Github link: https://github.com/TIGER-AI-Lab/VLM2Vec
45
- Overview: https://tiger-ai-lab.github.io/VLM2Vec/
46
  """
47
 
48
  TABLE_INTRODUCTION = """"""
@@ -97,7 +97,7 @@ SUBMIT_INTRODUCTION = """# Submit on MMEB Leaderboard Introduction
97
  ]
98
  ```
99
  You may refer to the Github page for instructions about evaluating your model.
100
- Github link: https://github.com/TIGER-AI-Lab/VLM2Vec
101
  Please send us an email at [email protected], attaching the JSON file. We will review your submission and update the leaderboard accordingly.
102
  """
103
 
@@ -121,7 +121,10 @@ MODEL_URLS = {
121
  "MM-Embed": "https://huggingface.co/nvidia/MM-Embed",
122
  "LLaVE-7B": "https://huggingface.co/zhibinlan/LLaVE-7B",
123
  "LLaVE-2B": "https://huggingface.co/zhibinlan/LLaVE-2B",
124
- "LLaVE-0.5B": "https://huggingface.co/zhibinlan/LLaVE-0.5B"
 
 
 
125
  }
126
 
127
  def create_hyperlinked_names(df):
 
40
  or a combination of both. MMEB is divided into 20 in-distribution datasets, which can be used for
41
  training, and 16 out-of-distribution datasets, reserved for evaluation.
42
 
43
+ The detailed explanation of the benchmark and datasets can be found in our paper: https://doi.org/10.48550/arXiv.2410.05160. \n
44
+ Github link: https://github.com/TIGER-AI-Lab/VLM2Vec. \n
45
+ Overview: https://tiger-ai-lab.github.io/VLM2Vec/. \n
46
  """
47
 
48
  TABLE_INTRODUCTION = """"""
 
97
  ]
98
  ```
99
  You may refer to the Github page for instructions about evaluating your model.
100
+ Github link: https://github.com/TIGER-AI-Lab/VLM2Vec. \n
101
  Please send us an email at [email protected], attaching the JSON file. We will review your submission and update the leaderboard accordingly.
102
  """
103
 
 
121
  "MM-Embed": "https://huggingface.co/nvidia/MM-Embed",
122
  "LLaVE-7B": "https://huggingface.co/zhibinlan/LLaVE-7B",
123
  "LLaVE-2B": "https://huggingface.co/zhibinlan/LLaVE-2B",
124
+ "LLaVE-0.5B": "https://huggingface.co/zhibinlan/LLaVE-0.5B",
125
+ "UniME(LLaVA-OneVision-7B-LoRA-Res336)": "https://huggingface.co/DeepGlint-AI/UniME-LLaVA-OneVision-7B",
126
+ "UniME(LLaVA-1.6-7B-LoRA-LowRes)": "https://huggingface.co/DeepGlint-AI/UniME-LLaVA-1.6-7B",
127
+ "UniME(Phi-3.5-V-LoRA)": "https://huggingface.co/DeepGlint-AI/UniME-Phi3.5-V-4.2B"
128
  }
129
 
130
  def create_hyperlinked_names(df):