File size: 7,298 Bytes
8fbc209
 
a7a2242
f16e094
8fbc209
 
 
062730b
 
8fbc209
 
f16e094
 
8fbc209
f16e094
 
 
 
8fbc209
f16e094
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8fbc209
f16e094
 
 
 
9ac6d2f
f16e094
 
 
 
 
 
 
 
 
 
 
 
 
062730b
2161a6c
4cc7c4e
 
 
a7a2242
4cc7c4e
 
b3a27e6
4cc7c4e
 
b3a27e6
dd24d8c
 
 
 
 
 
f16e094
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
062730b
a7a2242
 
 
34a094f
a7a2242
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
062730b
f16e094
8fbc209
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import gradio as gr
import spaces
import os
import time
from PIL import Image
from models.mllava import MLlavaProcessor, LlavaForConditionalGeneration, chat_mllava, MLlavaForConditionalGeneration
from typing import List
processor = MLlavaProcessor.from_pretrained("TIGER-Lab/Mantis-llava-7b-v1.1")
model = LlavaForConditionalGeneration.from_pretrained("TIGER-Lab/Mantis-llava-7b-v1.1")

@spaces.GPU
def generate(text:str, images:List[Image.Image], history: List[dict], **kwargs):
    global processor, model
    model = model.to("cuda")
    if not images:
        images = None
    for text, history in chat_mllava(text, images, model, processor, history=history, stream=True, **kwargs):
        yield text

    return text

def enable_next_image(uploaded_images, image):
    uploaded_images.append(image)
    return uploaded_images, gr.MultimodalTextbox(value=None, interactive=False)

def add_message(history, message):
    if message["files"]:
        for file in message["files"]:
            history.append([(file,), None])
    if message["text"]:
        history.append([message["text"], None])
    return history, gr.MultimodalTextbox(value=None)

def print_like_dislike(x: gr.LikeData):
    print(x.index, x.value, x.liked)


def get_chat_history(history):
    chat_history = []
    for i, message in enumerate(history):
        if isinstance(message[0], str):
            chat_history.append({"role": "user", "text": message[0]})
            if i != len(history) - 1:
                assert message[1], "The bot message is not provided, internal error"
                chat_history.append({"role": "assistant", "text": message[1]})
            else:
                assert not message[1], "the bot message internal error, get: {}".format(message[1])
                chat_history.append({"role": "assistant", "text": ""})
    return chat_history

def get_chat_images(history):
    images = []
    for message in history:
        if isinstance(message[0], tuple):
            images.extend(message[0])
    return images
            
def bot(history):
    print(history)
    cur_messages = {"text": "", "images": []}
    for message in history[::-1]:
        if message[1]:
            break
        if isinstance(message[0], str):
            cur_messages["text"] = message[0] + " " + cur_messages["text"]
        elif isinstance(message[0], tuple):
            cur_messages["images"].extend(message[0])
    cur_messages["text"] = cur_messages["text"].strip()
    cur_messages["images"] = cur_messages["images"][::-1]
    if not cur_messages["text"]:
        raise gr.Error("Please enter a message")
    if cur_messages['text'].count("<image>") < len(cur_messages['images']):
        gr.Warning("The number of images uploaded is more than the number of <image> placeholders in the text. Will automatically prepend <image> to the text.")
        cur_messages['text'] = "<image> "* (len(cur_messages['images']) - cur_messages['text'].count("<image>")) + cur_messages['text']
        history[-1][0] = cur_messages["text"]
    if cur_messages['text'].count("<image>") > len(cur_messages['images']):
        gr.Warning("The number of images uploaded is less than the number of <image> placeholders in the text. Will automatically remove extra <image> placeholders from the text.")
        cur_messages['text'] = cur_messages['text'][::-1].replace("<image>"[::-1], "", cur_messages['text'].count("<image>") - len(cur_messages['images']))[::-1]
        history[-1][0] = cur_messages["text"]
    
    chat_history = get_chat_history(history)
    chat_images = get_chat_images(history)
    generation_kwargs = {
        "max_new_tokens": 4096,
        "temperature": 0.2,
        "top_p": 1.0,
        "do_sample": True,
    }
    print(None, chat_images, chat_history, generation_kwargs)
    response = generate(None, chat_images, chat_history, **generation_kwargs)
            
    for _output in response:
        history[-1][1] = _output
        time.sleep(0.05)
        yield history
        
def build_demo():
    with gr.Blocks() as demo:
        
        with gr.Row():
            with gr.Column():
                gr.Markdown(""" # Mantis
        Mantis is a multimodal conversational AI model that can chat with users about images and text. It's optimized for multi-image reasoning, where inverleaved text and images can be used to generate responses.

        | [Github](https://github.com/TIGER-AI-Lab/Mantis) | [Blog](https://tiger-ai-lab.github.io/Blog/mantis) | [Models](https://huggingface.co/collections/TIGER-Lab/mantis-6619b0834594c878cdb1d6e4) |                   
                """)
                # gr.Image("./barchart_single_image_vqa.jpeg")
            with gr.Column():
                gr.Image("./barchart.jpeg")
        
        gr.Markdown("""## Chat with Mantis
        Mantis supports interleaved text-image input format, where you can simply use the placeholder `<image>` to indicate the position of uploaded images.
        The model is optimized for multi-image reasoning, while preserving the ability to chat about text and images in a single conversation.
        (The model currently serving is [Mantis-bakllava-7b](https://huggingface.co/TIGER-Lab/Mantis-bakllava-7b))
        """)
        
        chatbot = gr.Chatbot(line_breaks=True)
        chat_input = gr.MultimodalTextbox(interactive=True, file_types=["image"], placeholder="Enter message or upload images. Please use <image> to indicate the position of uploaded images", show_label=True)
        
        chat_msg = chat_input.submit(add_message, [chatbot, chat_input], [chatbot, chat_input])
        bot_msg = chat_msg.success(bot, chatbot, chatbot, api_name="bot_response")
        
        chatbot.like(print_like_dislike, None, None)
        
        with gr.Row():
            send_button = gr.Button("Send")
            clear_button = gr.ClearButton([chatbot, chat_input])
        
        send_button.click(
            add_message, [chatbot, chat_input], [chatbot, chat_input]
        ).then(
            bot, chatbot, chatbot, api_name="bot_response"
        )
        
        gr.Examples(
            examples=[
                {
                    "text": "<image> <image> How many dices are there in image 1 and image 2 respectively?",
                    "files": ["./examples/image10.jpg", "./examples/image11.jpg"]
                },
                {
                    "text": "<image> <image> What's the difference between these two images? Please describe as much as you can.", 
                    "files": ["./examples/image1.jpg", "./examples/image2.jpg"]
                },
                {
                    "text": "<image> <image> Which image shows an older dog?",
                    "files": ["./examples/image8.jpg", "./examples/image9.jpg"]   
                },
                {
                    "text": "Write a description for the given image sequence in a single paragraph, what is happening in this episode?", 
                    "files": ["./examples/image3.jpg", "./examples/image4.jpg", "./examples/image5.jpg", "./examples/image6.jpg", "./examples/image7.jpg"]
                },
            ],
            inputs=[chat_input],
        )        
        
    return demo    
    

if __name__ == "__main__":
    demo = build_demo()
    demo.launch()