File size: 8,860 Bytes
8fbc209
 
a7a2242
f16e094
8fbc209
bfc56dc
669c11e
335eee6
8fbc209
86744eb
 
335eee6
8fbc209
 
669c11e
f16e094
8fbc209
f16e094
 
335eee6
f16e094
8fbc209
f16e094
 
669c11e
 
 
 
 
 
 
 
 
f16e094
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
335eee6
 
f16e094
 
335eee6
f16e094
 
335eee6
f16e094
 
335eee6
f16e094
 
b51e863
f16e094
 
 
 
 
 
bfc56dc
b51e863
f16e094
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8a6491
 
 
8fbc209
f16e094
 
669c11e
f16e094
 
669c11e
 
f16e094
669c11e
e8a6491
 
 
669c11e
f16e094
 
 
 
b51e863
 
f16e094
 
 
062730b
d74a248
 
a7a2242
75c15ae
d74a248
b3a27e6
dd24d8c
 
 
cdc6293
dd24d8c
 
f16e094
 
 
 
bfc56dc
b51e863
bfc56dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b51e863
bfc56dc
f16e094
 
 
bfc56dc
f16e094
 
 
bfc56dc
f16e094
 
 
 
 
062730b
a7a2242
 
7c236a6
 
 
 
a7a2242
 
 
 
 
 
 
 
 
 
 
 
3f25e3e
 
 
 
a7a2242
 
 
062730b
3f7f343
 
 
 
 
 
 
 
669c11e
 
f16e094
8fbc209
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import gradio as gr
import spaces
import os
import time
from PIL import Image
import functools
from models.mllava import MLlavaProcessor, LlavaForConditionalGeneration, chat_mllava_stream, MLlavaForConditionalGeneration, chat_mllava
from models.conversation import conv_templates
from typing import List
processor = MLlavaProcessor.from_pretrained("TIGER-Lab/Mantis-8B-siglip-llama3")
model = LlavaForConditionalGeneration.from_pretrained("TIGER-Lab/Mantis-8B-siglip-llama3")
conv_template = conv_templates['llama_3']

@spaces.GPU
def generate_stream(text:str, images:List[Image.Image], history: List[dict], **kwargs):
    global processor, model
    model = model.to("cuda")
    if not images:
        images = None
    for text, history in chat_mllava_stream(text, images, model, processor, history=history, **kwargs):
        yield text

    return text

@spaces.GPU
def generate(text:str, images:List[Image.Image], history: List[dict], **kwargs):
    global processor, model
    model = model.to("cuda")
    if not images:
        images = None
    generated_text, history = chat_mllava(text, images, model, processor, history=history, **kwargs)
    return generated_text

def enable_next_image(uploaded_images, image):
    uploaded_images.append(image)
    return uploaded_images, gr.MultimodalTextbox(value=None, interactive=False)

def add_message(history, message):
    if message["files"]:
        for file in message["files"]:
            history.append([(file,), None])
    if message["text"]:
        history.append([message["text"], None])
    return history, gr.MultimodalTextbox(value=None)

def print_like_dislike(x: gr.LikeData):
    print(x.index, x.value, x.liked)


def get_chat_history(history):
    chat_history = []
    user_role = conv_template.roles[0]
    assistant_role = conv_template.roles[1]
    for i, message in enumerate(history):
        if isinstance(message[0], str):
            chat_history.append({"role": user_role, "text": message[0]})
            if i != len(history) - 1:
                assert message[1], "The bot message is not provided, internal error"
                chat_history.append({"role": assistant_role, "text": message[1]})
            else:
                assert not message[1], "the bot message internal error, get: {}".format(message[1])
                chat_history.append({"role": assistant_role, "text": ""})
    return chat_history


def get_chat_images(history):
    images = []
    for message in history:
        if isinstance(message[0], tuple):
            images.extend(message[0])
    return images


def bot(history):
    print(history)
    cur_messages = {"text": "", "images": []}
    for message in history[::-1]:
        if message[1]:
            break
        if isinstance(message[0], str):
            cur_messages["text"] = message[0] + " " + cur_messages["text"]
        elif isinstance(message[0], tuple):
            cur_messages["images"].extend(message[0])
    cur_messages["text"] = cur_messages["text"].strip()
    cur_messages["images"] = cur_messages["images"][::-1]
    if not cur_messages["text"]:
        raise gr.Error("Please enter a message")
    if cur_messages['text'].count("<image>") < len(cur_messages['images']):
        gr.Warning("The number of images uploaded is more than the number of <image> placeholders in the text. Will automatically prepend <image> to the text.")
        cur_messages['text'] = "<image> "* (len(cur_messages['images']) - cur_messages['text'].count("<image>")) + cur_messages['text']
        history[-1][0] = cur_messages["text"]
    if cur_messages['text'].count("<image>") > len(cur_messages['images']):
        gr.Warning("The number of images uploaded is less than the number of <image> placeholders in the text. Will automatically remove extra <image> placeholders from the text.")
        cur_messages['text'] = cur_messages['text'][::-1].replace("<image>"[::-1], "", cur_messages['text'].count("<image>") - len(cur_messages['images']))[::-1]
        history[-1][0] = cur_messages["text"]
        
    print(cur_messages)
    
    
    chat_history = get_chat_history(history)
    chat_images = get_chat_images(history)
    
    generation_kwargs = {
        "max_new_tokens": 4096,
        "num_beams": 1,
        "do_sample": False
    }
    
    print(chat_history)
    print(chat_images)
    
    response = generate_stream(None, chat_images, chat_history, **generation_kwargs) 
    for _output in response:
        history[-1][1] = _output
        time.sleep(0.05)
        yield history


        
def build_demo():
    with gr.Blocks() as demo:
        
        gr.Markdown(""" # Mantis
Mantis is a multimodal conversational AI model that can chat with users about images and text. It's optimized for multi-image reasoning, where inverleaved text and images can be used to generate responses.

### [Paper](https://arxiv.org/abs/2405.01483) | [Github](https://github.com/TIGER-AI-Lab/Mantis) | [Models](https://huggingface.co/collections/TIGER-Lab/mantis-6619b0834594c878cdb1d6e4) | [Dataset](https://huggingface.co/datasets/TIGER-Lab/Mantis-Instruct) | [Website](https://tiger-ai-lab.github.io/Mantis/)            
        """)
        
        gr.Markdown("""## Chat with Mantis
        Mantis supports interleaved text-image input format, where you can simply use the placeholder `<image>` to indicate the position of uploaded images.
        The model is optimized for multi-image reasoning, while preserving the ability to chat about text and images in a single conversation.
        (The model currently serving is [🤗 TIGER-Lab/Mantis-8B-siglip-llama3](https://huggingface.co/TIGER-Lab/Mantis-8B-siglip-llama3))
        """)
        
        chatbot = gr.Chatbot(line_breaks=True)
        chat_input = gr.MultimodalTextbox(interactive=True, file_types=["image"], placeholder="Enter message or upload images. Please use <image> to indicate the position of uploaded images", show_label=True)
        
        chat_msg = chat_input.submit(add_message, [chatbot, chat_input], [chatbot, chat_input])
        
        """
        with gr.Accordion(label='Advanced options', open=False):
            temperature = gr.Slider(
                label='Temperature',
                minimum=0.1,
                maximum=2.0,
                step=0.1,
                value=0.2,
                interactive=True
            )
            top_p = gr.Slider(
                label='Top-p',
                minimum=0.05,
                maximum=1.0,
                step=0.05,
                value=1.0,
                interactive=True
            )
        """

        bot_msg = chat_msg.success(bot, chatbot, chatbot, api_name="bot_response")
        
        chatbot.like(print_like_dislike, None, None)

        with gr.Row():
            send_button = gr.Button("Send")
            clear_button = gr.ClearButton([chatbot, chat_input])

        send_button.click(
            add_message, [chatbot, chat_input], [chatbot, chat_input]
        ).then(
            bot, chatbot, chatbot, api_name="bot_response"
        )
        
        gr.Examples(
            examples=[
                {
                    "text": "<image> <image> <image> Which image shows a different mood of character from the others?",
                    "files": ["./examples/image12.jpg", "./examples/image13.jpg", "./examples/image14.jpg"]
                },
                {
                    "text": "<image> <image> What's the difference between these two images? Please describe as much as you can.", 
                    "files": ["./examples/image1.jpg", "./examples/image2.jpg"]
                },
                {
                    "text": "<image> <image> Which image shows an older dog?",
                    "files": ["./examples/image8.jpg", "./examples/image9.jpg"]   
                },
                {
                    "text": "Write a description for the given image sequence in a single paragraph, what is happening in this episode?", 
                    "files": ["./examples/image3.jpg", "./examples/image4.jpg", "./examples/image5.jpg", "./examples/image6.jpg", "./examples/image7.jpg"]
                },
                {
                    "text": "<image> <image> How many dices are there in image 1 and image 2 respectively?",
                    "files": ["./examples/image10.jpg", "./examples/image15.jpg"]
                },
            ],
            inputs=[chat_input],
        )        
        
        gr.Markdown("""
## Citation
```
@article{jiang2024mantis,
  title={MANTIS: Interleaved Multi-Image Instruction Tuning},
  author={Jiang, Dongfu and He, Xuan and Zeng, Huaye and Wei, Con and Ku, Max and Liu, Qian and Chen, Wenhu},
  journal={arXiv preprint arXiv:2405.01483},
  year={2024}
}
```""")
    return demo    
    

if __name__ == "__main__":
    demo = build_demo()
    demo.launch()