|
import PIL |
|
import torch |
|
from .modeling_llava import LlavaForConditionalGeneration |
|
from .processing_llava import MLlavaProcessor |
|
from ..conversation import conv_mllava_v1_mmtag as default_conv |
|
from typing import List, Tuple, Union, Tuple |
|
|
|
def chat_mllava( |
|
text:str, |
|
images: List[Union[PIL.Image.Image, str]], |
|
model:LlavaForConditionalGeneration, |
|
processor:MLlavaProcessor, |
|
max_input_length:int=None, |
|
history:List[dict]=None, |
|
stream:bool=False, |
|
**kwargs) -> Tuple[str, List[dict]]: |
|
""" |
|
Chat with the Mllava model |
|
Args: |
|
text: str, the text to be sent to the model, where <image> will be the placeholder for the image |
|
images: List[PIL.Image.Image], the images to be sent to the model, or None |
|
model: LlavaForConditionalGeneration, the model to be used |
|
processor: MLlavaProcessor, the processor to be used |
|
max_input_length: int, the maximum input length |
|
history: List[dict], list of messages in the conversation as history. Each message is a dictionary {"role": "ASSISTANT/USER", "text": "the message"}. If None, the conversation will start from scratch |
|
kwargs: dict, the generation kwargs |
|
Returns: |
|
Tuple[str, List[dict]], the generated text and the history of the conversation |
|
|
|
|
|
""" |
|
conv = default_conv.copy() |
|
conv.messages = [] |
|
if history is not None: |
|
for message in history: |
|
message["role"] = message["role"].upper() |
|
assert message["role"] in conv.roles |
|
conv.append_message(message["role"], message["text"]) |
|
else: |
|
history = [] |
|
|
|
if text is not None: |
|
conv.append_message(conv.roles[0], text) |
|
conv.append_message(conv.roles[1], "") |
|
history.append({"role": conv.roles[0], "text": text}) |
|
history.append({"role": conv.roles[1], "text": ""}) |
|
else: |
|
assert history, "The history should not be empty if the text is None" |
|
assert history[-1]['role'] == conv.roles[1], "The last message in the history should be the assistant, an empty message" |
|
assert history[-2]['text'], "The last user message in the history should not be empty" |
|
assert history[-1]['text'] == "", "The last assistant message in the history should be empty" |
|
|
|
prompt = conv.get_prompt() |
|
if images: |
|
for i in range(len(images)): |
|
if isinstance(images[i], str): |
|
images[i] = PIL.Image.open(images[i]) |
|
|
|
inputs = processor(images=images, text=prompt, return_tensors="pt", truncation=True, max_length=max_input_length) |
|
inputs = {k: v.to(model.device) if v is not None else v for k, v in inputs.items()} |
|
|
|
if stream: |
|
from transformers import TextIteratorStreamer |
|
from threading import Thread |
|
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) |
|
kwargs["streamer"] = streamer |
|
inputs.update(kwargs) |
|
thread = Thread(target=model.generate, kwargs=inputs) |
|
thread.start() |
|
for _output in streamer: |
|
history[-1]["text"] += _output |
|
yield history[-1]["text"], history |
|
else: |
|
output_ids = model.generate(**inputs, **kwargs) |
|
output_ids = output_ids[0] |
|
|
|
|
|
generated_ids = output_ids[inputs["input_ids"].shape[-1]:] |
|
generated_text = processor.decode(generated_ids, skip_special_tokens=True) |
|
|
|
history[-1]["text"] = history[-1]["text"].strip() |
|
|
|
return generated_text, history |