import PIL import torch from .modeling_llava import LlavaForConditionalGeneration from .processing_llava import MLlavaProcessor # from ..conversation import conv_mllava_v1_mmtag as default_conv from ..conversation import conv_mllava_v1 as default_conv, conv_templates from typing import List, Tuple, Union, Tuple def chat_mllava( text:str, images: List[Union[PIL.Image.Image, str]], model:LlavaForConditionalGeneration, processor:MLlavaProcessor, max_input_length:int=None, history:List[dict]=None, **kwargs) -> Tuple[str, List[dict]]: """ Chat with the Mllava model Args: text: str, the text to be sent to the model, where will be the placeholder for the image images: List[PIL.Image.Image], the images to be sent to the model, or None model: LlavaForConditionalGeneration, the model to be used processor: MLlavaProcessor, the processor to be used max_input_length: int, the maximum input length history: List[dict], list of messages in the conversation as history. Each message is a dictionary {"role": "ASSISTANT/USER", "text": "the message"}. If None, the conversation will start from scratch kwargs: dict, the generation kwargs Returns: Tuple[str, List[dict]], the generated text and the history of the conversation """ if "llama-3" in model.language_model.name_or_path.lower(): conv = conv_templates['llama_3'] terminators = [ processor.tokenizer.eos_token_id, processor.tokenizer.convert_tokens_to_ids("<|eot_id|>") ] else: conv = default_conv terminators = None kwargs["eos_token_id"] = terminators conv = conv.copy() conv.messages = [] if history is not None: for message in history: assert message["role"] in conv.roles conv.append_message(message["role"], message["text"]) else: history = [] conv.append_message(conv.roles[0], text) conv.append_message(conv.roles[1], "") prompt = conv.get_prompt() if images: for i in range(len(images)): if isinstance(images[i], str): images[i] = PIL.Image.open(images[i]).convert("RGB") inputs = processor(images=images, text=prompt, return_tensors="pt", truncation=True, max_length=max_input_length) for k, v in inputs.items(): if v is not None: if isinstance(v, torch.Tensor): inputs[k] = v.to(model.device) elif isinstance(v, list): inputs[k] = [x.to(model.device) for x in v] else: raise ValueError(f"Invalid input type: {type(v)}") output_ids = model.generate(**inputs, **kwargs) output_ids = output_ids[0] # remove the input tokens generated_ids = output_ids[inputs["input_ids"].shape[-1]:] generated_text = processor.decode(generated_ids, skip_special_tokens=True) history.append({"role": conv.roles[0], "text": text}) history.append({"role": conv.roles[1], "text": generated_text}) return generated_text, history def chat_mllava_stream( text:str, images: List[Union[PIL.Image.Image, str]], model:LlavaForConditionalGeneration, processor:MLlavaProcessor, max_input_length:int=None, history:List[dict]=None, **kwargs) -> Tuple[str, List[dict]]: """ Chat with the Mllava model Args: text: str, the text to be sent to the model, where will be the placeholder for the image images: List[PIL.Image.Image], the images to be sent to the model, or None model: LlavaForConditionalGeneration, the model to be used processor: MLlavaProcessor, the processor to be used max_input_length: int, the maximum input length history: List[dict], list of messages in the conversation as history. Each message is a dictionary {"role": "ASSISTANT/USER", "text": "the message"}. If None, the conversation will start from scratch kwargs: dict, the generation kwargs Returns: Tuple[str, List[dict]], the generated text and the history of the conversation """ if "llama-3" in model.language_model.name_or_path.lower(): conv = conv_templates['llama_3'] terminators = [ processor.tokenizer.eos_token_id, processor.tokenizer.convert_tokens_to_ids("<|eot_id|>") ] else: conv = default_conv terminators = None kwargs["eos_token_id"] = terminators conv = conv.copy() conv.messages = [] if history is not None: for message in history: assert message["role"] in conv.roles conv.append_message(message["role"], message["text"]) else: history = [] conv.append_message(conv.roles[0], text) conv.append_message(conv.roles[1], "") prompt = conv.get_prompt() if images: for i in range(len(images)): if isinstance(images[i], str): images[i] = PIL.Image.open(images[i]) inputs = processor(images=images, text=prompt, return_tensors="pt", truncation=True, max_length=max_input_length) for k, v in inputs.items(): if v is not None: if isinstance(v, torch.Tensor): inputs[k] = v.to(model.device) elif isinstance(v, list): inputs[k] = [x.to(model.device) for x in v] else: raise ValueError(f"Invalid input type: {type(v)}") from transformers import TextIteratorStreamer from threading import Thread streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) kwargs["streamer"] = streamer inputs.update(kwargs) thread = Thread(target=model.generate, kwargs=inputs) thread.start() history.append({"role": conv.roles[0], "text": text}) history.append({"role": conv.roles[1], "text": ""}) for _output in streamer: history[-1]["text"] += _output yield history[-1]["text"], history