File size: 8,555 Bytes
9f200a2
 
b692859
 
 
9f200a2
 
 
 
 
b692859
9f200a2
 
 
 
 
 
 
 
 
 
 
 
b692859
 
9f200a2
 
 
b692859
 
9f200a2
 
 
 
b692859
9f200a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b692859
 
9f200a2
b692859
 
9f200a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b692859
 
9f200a2
 
 
 
 
 
 
 
 
 
b692859
 
 
 
 
 
 
 
9f200a2
b692859
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f200a2
 
 
b692859
 
 
 
 
 
 
 
 
9f200a2
b692859
9f200a2
 
 
 
 
 
 
 
 
 
b692859
 
9f200a2
 
 
b692859
9f200a2
b692859
 
9f200a2
b692859
9f200a2
b692859
9f200a2
b692859
9f200a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b692859
9f200a2
 
 
 
 
b692859
 
9f200a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b692859
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
import os
import uuid
import gradio as gr
import numpy as np
import random
import time
from omegaconf import OmegaConf

import spaces

import torch
import torchvision

from concurrent.futures import ThreadPoolExecutor
import uuid

from utils.lora import collapse_lora, monkeypatch_remove_lora
from utils.lora_handler import LoraHandler
from utils.common_utils import load_model_checkpoint
from utils.utils import instantiate_from_config
from scheduler.t2v_turbo_scheduler import T2VTurboScheduler
from pipeline.t2v_turbo_vc2_pipeline import T2VTurboVC2Pipeline


device = "cuda" if torch.cuda.is_available() else "cpu"
MAX_SEED = np.iinfo(np.int32).max
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1"


if torch.cuda.is_available():
    config = OmegaConf.load("configs/inference_t2v_512_v2.0.yaml")
    model_config = config.pop("model", OmegaConf.create())
    pretrained_t2v = instantiate_from_config(model_config)
    pretrained_t2v = load_model_checkpoint(pretrained_t2v, "checkpoints/vc2_model.ckpt")

    unet_config = model_config["params"]["unet_config"]
    unet_config["params"]["time_cond_proj_dim"] = 256
    unet = instantiate_from_config(unet_config)

    unet.load_state_dict(
        pretrained_t2v.model.diffusion_model.state_dict(), strict=False
    )

    use_unet_lora = True
    lora_manager = LoraHandler(
        version="cloneofsimo",
        use_unet_lora=use_unet_lora,
        save_for_webui=True,
        unet_replace_modules=["UNetModel"],
    )
    lora_manager.add_lora_to_model(
        use_unet_lora,
        unet,
        lora_manager.unet_replace_modules,
        lora_path="checkpoints/unet_lora.pt",
        dropout=0.1,
        r=64,
    )
    unet.eval()
    collapse_lora(unet, lora_manager.unet_replace_modules)
    monkeypatch_remove_lora(unet)

    torch.save(unet.state_dict(), "checkpoints/merged_unet.pt")

    pretrained_t2v.model.diffusion_model = unet
    scheduler = T2VTurboScheduler(
        linear_start=model_config["params"]["linear_start"],
        linear_end=model_config["params"]["linear_end"],
    )
    pipeline = T2VTurboVC2Pipeline(pretrained_t2v, scheduler, model_config)

    pipeline.to(device)
else: 
    assert False


def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed


def save_video(
    vid_tensor, profile: gr.OAuthProfile | None, metadata: dict, root_path="./", fps=16
):
    unique_name = str(uuid.uuid4()) + ".mp4"
    prefix = ""
    for k, v in metadata.items():
        prefix += f"{k}={v}_"
    unique_name = prefix + unique_name
    unique_name = os.path.join(root_path, unique_name)

    video = vid_tensor.detach().cpu()
    video = torch.clamp(video.float(), -1.0, 1.0)
    video = video.permute(1, 0, 2, 3)  # t,c,h,w
    video = (video + 1.0) / 2.0
    video = (video * 255).to(torch.uint8).permute(0, 2, 3, 1)

    torchvision.io.write_video(
        unique_name, video, fps=fps, video_codec="h264", options={"crf": "10"}
    )
    return unique_name


def save_videos(
    video_array, profile: gr.OAuthProfile | None, metadata: dict, fps: int = 16
):
    paths = []
    root_path = "./videos/"
    os.makedirs(root_path, exist_ok=True)
    with ThreadPoolExecutor() as executor:
        paths = list(
            executor.map(
                save_video,
                video_array,
                [profile] * len(video_array),
                [metadata] * len(video_array),
                [root_path] * len(video_array),
                [fps] * len(video_array),
            )
        )
    return paths[0]


@spaces.GPU(duration=60)
def generate(
    prompt: str,
    seed: int = 0,
    guidance_scale: float = 7.5,
    num_inference_steps: int = 4,
    num_frames: int = 16,
    fps: int = 16,
    randomize_seed: bool = False,
    param_dtype="torch.float16",
    progress=gr.Progress(track_tqdm=True),
    profile: gr.OAuthProfile | None = None,
):
    seed = randomize_seed_fn(seed, randomize_seed)
    torch.manual_seed(seed)
    pipeline.to(
        torch_device=device,
        torch_dtype=torch.float16 if param_dtype == "torch.float16" else torch.float32,
    )
    start_time = time.time()

    result = pipeline(
        prompt=prompt,
        frames=num_frames,
        fps=fps,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        num_videos_per_prompt=1,
    )
    paths = save_videos(
        result,
        profile,
        metadata={
            "prompt": prompt,
            "seed": seed,
            "guidance_scale": guidance_scale,
            "num_inference_steps": num_inference_steps,
        },
        fps=fps,
    )
    print(time.time() - start_time)
    return paths, seed

examples = [
    "An astronaut riding a horse.",
    "Darth vader surfing in waves.",
    "Robot dancing in times square.",
    "Clown fish swimming through the coral reef.",
    "Pikachu snowboarding.",
    "With the style of van gogh, A young couple dances under the moonlight by the lake.",
    "A young woman with glasses is jogging in the park wearing a pink headband.",
    "Impressionist style, a yellow rubber duck floating on the wave on the sunset",
    "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k",
    "With the style of low-poly game art, A majestic, white horse gallops gracefully across a moonlit beach.",
]


if torch.cuda.is_available():
    power_device = "GPU"
else:
    power_device = "CPU"

with gr.Blocks(css="style.css") as demo:
    
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""
        # Text-to-Image Gradio Template
        Currently running on {power_device}.
        """)
        
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            run_button = gr.Button("Run", scale=0)
        result_video = gr.Video(
            label="Generated Video", interactive=False, autoplay=True
        )

        with gr.Accordion("Advanced Settings", open=False):
            
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
                randomize=True,
            )
            randomize_seed = gr.Checkbox(label="Randomize seed across runs", value=True)
            dtype_choices = ["torch.float16", "torch.float32"]
            param_dtype = gr.Radio(
                dtype_choices,
                label="torch.dtype",
                value=dtype_choices[0],
                interactive=True,
                info="To save GPU memory, use torch.float16. For better quality, use torch.float32.",
            )

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale for base",
                    minimum=2,
                    maximum=14,
                    step=0.1,
                    value=7.5,
                )
                num_inference_steps = gr.Slider(
                    label="Number of inference steps for base",
                    minimum=1,
                    maximum=8,
                    step=1,
                    value=4,
                )
            with gr.Row():
                num_frames = gr.Slider(
                    label="Number of Video Frames",
                    minimum=16,
                    maximum=48,
                    step=8,
                    value=16,
                )
                fps = gr.Slider(
                    label="FPS",
                    minimum=8,
                    maximum=32,
                    step=4,
                    value=16,
                )

        gr.Examples(
            examples=examples,
            inputs=prompt,
            outputs=result_video,
            fn=generate,
            cache_examples=CACHE_EXAMPLES,
        )

        gr.on(
            triggers=[
                prompt.submit,
                run_button.click,
            ],
            fn=generate,
            inputs=[
                prompt,
                seed,
                guidance_scale,
                num_inference_steps,
                num_frames,
                fps,
                randomize_seed,
                param_dtype,
            ],
            outputs=[result_video, seed],
            api_name="run",
        )

demo.queue().launch()