Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,555 Bytes
9f200a2 b692859 9f200a2 b692859 9f200a2 b692859 9f200a2 b692859 9f200a2 b692859 9f200a2 b692859 9f200a2 b692859 9f200a2 b692859 9f200a2 b692859 9f200a2 b692859 9f200a2 b692859 9f200a2 b692859 9f200a2 b692859 9f200a2 b692859 9f200a2 b692859 9f200a2 b692859 9f200a2 b692859 9f200a2 b692859 9f200a2 b692859 9f200a2 b692859 9f200a2 b692859 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
import os
import uuid
import gradio as gr
import numpy as np
import random
import time
from omegaconf import OmegaConf
import spaces
import torch
import torchvision
from concurrent.futures import ThreadPoolExecutor
import uuid
from utils.lora import collapse_lora, monkeypatch_remove_lora
from utils.lora_handler import LoraHandler
from utils.common_utils import load_model_checkpoint
from utils.utils import instantiate_from_config
from scheduler.t2v_turbo_scheduler import T2VTurboScheduler
from pipeline.t2v_turbo_vc2_pipeline import T2VTurboVC2Pipeline
device = "cuda" if torch.cuda.is_available() else "cpu"
MAX_SEED = np.iinfo(np.int32).max
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1"
if torch.cuda.is_available():
config = OmegaConf.load("configs/inference_t2v_512_v2.0.yaml")
model_config = config.pop("model", OmegaConf.create())
pretrained_t2v = instantiate_from_config(model_config)
pretrained_t2v = load_model_checkpoint(pretrained_t2v, "checkpoints/vc2_model.ckpt")
unet_config = model_config["params"]["unet_config"]
unet_config["params"]["time_cond_proj_dim"] = 256
unet = instantiate_from_config(unet_config)
unet.load_state_dict(
pretrained_t2v.model.diffusion_model.state_dict(), strict=False
)
use_unet_lora = True
lora_manager = LoraHandler(
version="cloneofsimo",
use_unet_lora=use_unet_lora,
save_for_webui=True,
unet_replace_modules=["UNetModel"],
)
lora_manager.add_lora_to_model(
use_unet_lora,
unet,
lora_manager.unet_replace_modules,
lora_path="checkpoints/unet_lora.pt",
dropout=0.1,
r=64,
)
unet.eval()
collapse_lora(unet, lora_manager.unet_replace_modules)
monkeypatch_remove_lora(unet)
torch.save(unet.state_dict(), "checkpoints/merged_unet.pt")
pretrained_t2v.model.diffusion_model = unet
scheduler = T2VTurboScheduler(
linear_start=model_config["params"]["linear_start"],
linear_end=model_config["params"]["linear_end"],
)
pipeline = T2VTurboVC2Pipeline(pretrained_t2v, scheduler, model_config)
pipeline.to(device)
else:
assert False
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def save_video(
vid_tensor, profile: gr.OAuthProfile | None, metadata: dict, root_path="./", fps=16
):
unique_name = str(uuid.uuid4()) + ".mp4"
prefix = ""
for k, v in metadata.items():
prefix += f"{k}={v}_"
unique_name = prefix + unique_name
unique_name = os.path.join(root_path, unique_name)
video = vid_tensor.detach().cpu()
video = torch.clamp(video.float(), -1.0, 1.0)
video = video.permute(1, 0, 2, 3) # t,c,h,w
video = (video + 1.0) / 2.0
video = (video * 255).to(torch.uint8).permute(0, 2, 3, 1)
torchvision.io.write_video(
unique_name, video, fps=fps, video_codec="h264", options={"crf": "10"}
)
return unique_name
def save_videos(
video_array, profile: gr.OAuthProfile | None, metadata: dict, fps: int = 16
):
paths = []
root_path = "./videos/"
os.makedirs(root_path, exist_ok=True)
with ThreadPoolExecutor() as executor:
paths = list(
executor.map(
save_video,
video_array,
[profile] * len(video_array),
[metadata] * len(video_array),
[root_path] * len(video_array),
[fps] * len(video_array),
)
)
return paths[0]
@spaces.GPU(duration=60)
def generate(
prompt: str,
seed: int = 0,
guidance_scale: float = 7.5,
num_inference_steps: int = 4,
num_frames: int = 16,
fps: int = 16,
randomize_seed: bool = False,
param_dtype="torch.float16",
progress=gr.Progress(track_tqdm=True),
profile: gr.OAuthProfile | None = None,
):
seed = randomize_seed_fn(seed, randomize_seed)
torch.manual_seed(seed)
pipeline.to(
torch_device=device,
torch_dtype=torch.float16 if param_dtype == "torch.float16" else torch.float32,
)
start_time = time.time()
result = pipeline(
prompt=prompt,
frames=num_frames,
fps=fps,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
num_videos_per_prompt=1,
)
paths = save_videos(
result,
profile,
metadata={
"prompt": prompt,
"seed": seed,
"guidance_scale": guidance_scale,
"num_inference_steps": num_inference_steps,
},
fps=fps,
)
print(time.time() - start_time)
return paths, seed
examples = [
"An astronaut riding a horse.",
"Darth vader surfing in waves.",
"Robot dancing in times square.",
"Clown fish swimming through the coral reef.",
"Pikachu snowboarding.",
"With the style of van gogh, A young couple dances under the moonlight by the lake.",
"A young woman with glasses is jogging in the park wearing a pink headband.",
"Impressionist style, a yellow rubber duck floating on the wave on the sunset",
"Self-portrait oil painting, a beautiful cyborg with golden hair, 8k",
"With the style of low-poly game art, A majestic, white horse gallops gracefully across a moonlit beach.",
]
if torch.cuda.is_available():
power_device = "GPU"
else:
power_device = "CPU"
with gr.Blocks(css="style.css") as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""
# Text-to-Image Gradio Template
Currently running on {power_device}.
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result_video = gr.Video(
label="Generated Video", interactive=False, autoplay=True
)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
randomize=True,
)
randomize_seed = gr.Checkbox(label="Randomize seed across runs", value=True)
dtype_choices = ["torch.float16", "torch.float32"]
param_dtype = gr.Radio(
dtype_choices,
label="torch.dtype",
value=dtype_choices[0],
interactive=True,
info="To save GPU memory, use torch.float16. For better quality, use torch.float32.",
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale for base",
minimum=2,
maximum=14,
step=0.1,
value=7.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps for base",
minimum=1,
maximum=8,
step=1,
value=4,
)
with gr.Row():
num_frames = gr.Slider(
label="Number of Video Frames",
minimum=16,
maximum=48,
step=8,
value=16,
)
fps = gr.Slider(
label="FPS",
minimum=8,
maximum=32,
step=4,
value=16,
)
gr.Examples(
examples=examples,
inputs=prompt,
outputs=result_video,
fn=generate,
cache_examples=CACHE_EXAMPLES,
)
gr.on(
triggers=[
prompt.submit,
run_button.click,
],
fn=generate,
inputs=[
prompt,
seed,
guidance_scale,
num_inference_steps,
num_frames,
fps,
randomize_seed,
param_dtype,
],
outputs=[result_video, seed],
api_name="run",
)
demo.queue().launch() |