Spaces:
Sleeping
Sleeping
Upload 4 files
Browse files- src/modules/console_colors.py +45 -0
- src/modules/csv_handler.py +47 -0
- src/modules/plot.py +303 -0
- src/modules/timer.py +26 -0
src/modules/console_colors.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Colors for the console"""
|
2 |
+
|
3 |
+
ULTRASINGER_HEAD = "\033[92m[UltraSinger]\033[0m"
|
4 |
+
|
5 |
+
|
6 |
+
def blue_highlighted(text: str) -> str:
|
7 |
+
"""Returns a blue highlighted text"""
|
8 |
+
return f"{Bcolors.blue}{text}{Bcolors.endc}"
|
9 |
+
|
10 |
+
|
11 |
+
def gold_highlighted(text: str) -> str:
|
12 |
+
"""Returns a gold highlighted text"""
|
13 |
+
return f"{Bcolors.gold}{text}{Bcolors.endc}"
|
14 |
+
|
15 |
+
|
16 |
+
def light_blue_highlighted(text: str) -> str:
|
17 |
+
"""Returns a light blue highlighted text"""
|
18 |
+
return f"{Bcolors.light_blue}{text}{Bcolors.endc}"
|
19 |
+
|
20 |
+
|
21 |
+
def underlined(text: str) -> str:
|
22 |
+
"""Returns an underlined text"""
|
23 |
+
return f"{Bcolors.underline}{text}{Bcolors.endc}"
|
24 |
+
|
25 |
+
|
26 |
+
def red_highlighted(text: str) -> str:
|
27 |
+
"""Returns a red highlighted text"""
|
28 |
+
return f"{Bcolors.red}{text}{Bcolors.endc}"
|
29 |
+
|
30 |
+
|
31 |
+
def cyan_highlighted(text: str) -> str:
|
32 |
+
"""Returns a cyan highlighted text"""
|
33 |
+
return f"{Bcolors.cyan}{text}{Bcolors.endc}"
|
34 |
+
|
35 |
+
|
36 |
+
class Bcolors:
|
37 |
+
"""Colors for the console"""
|
38 |
+
|
39 |
+
blue = "\033[94m"
|
40 |
+
red = "\033[91m"
|
41 |
+
light_blue = "\033[96m"
|
42 |
+
cyan = "\033[36m"
|
43 |
+
gold = "\033[93m"
|
44 |
+
underline = "\033[4m"
|
45 |
+
endc = "\033[0m"
|
src/modules/csv_handler.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""CSV export module"""
|
2 |
+
|
3 |
+
import csv
|
4 |
+
|
5 |
+
from modules.console_colors import ULTRASINGER_HEAD
|
6 |
+
from modules.Speech_Recognition.TranscribedData import TranscribedData
|
7 |
+
|
8 |
+
|
9 |
+
def export_transcribed_data_to_csv(transcribed_data: list[TranscribedData], filename: str) -> None:
|
10 |
+
"""Export transcribed data to csv"""
|
11 |
+
print(f"{ULTRASINGER_HEAD} Exporting transcribed data to CSV")
|
12 |
+
|
13 |
+
with open(filename, "w", encoding="utf-8", newline="") as csvfile:
|
14 |
+
writer = csv.writer(csvfile)
|
15 |
+
header = ["word", "start", "end", "confidence"]
|
16 |
+
writer.writerow(header)
|
17 |
+
for i, data in enumerate(transcribed_data):
|
18 |
+
writer.writerow(
|
19 |
+
[
|
20 |
+
data.word,
|
21 |
+
data.start,
|
22 |
+
data.end,
|
23 |
+
data.conf,
|
24 |
+
]
|
25 |
+
)
|
26 |
+
|
27 |
+
|
28 |
+
def write_lists_to_csv(times, frequencies, confidences, filename: str):
|
29 |
+
"""Write lists to csv"""
|
30 |
+
with open(filename, "w", encoding="utf-8", newline="") as csvfile:
|
31 |
+
writer = csv.writer(csvfile)
|
32 |
+
header = ["time", "frequency", "confidence"]
|
33 |
+
writer.writerow(header)
|
34 |
+
for i in enumerate(times):
|
35 |
+
pos = i[0]
|
36 |
+
writer.writerow([times[pos], frequencies[pos], confidences[pos]])
|
37 |
+
|
38 |
+
|
39 |
+
def read_data_from_csv(filename: str):
|
40 |
+
"""Read data from csv"""
|
41 |
+
csv_data = []
|
42 |
+
with open(filename, "r", encoding="utf-8") as csv_file:
|
43 |
+
csv_reader = csv.reader(csv_file)
|
44 |
+
for line in csv_reader:
|
45 |
+
csv_data.append(line)
|
46 |
+
headless_data = csv_data[1:]
|
47 |
+
return headless_data
|
src/modules/plot.py
ADDED
@@ -0,0 +1,303 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Plot transcribed data"""
|
2 |
+
import os
|
3 |
+
from dataclasses import dataclass
|
4 |
+
from re import sub
|
5 |
+
|
6 |
+
import librosa
|
7 |
+
import numpy
|
8 |
+
from matplotlib import pyplot as plt
|
9 |
+
from matplotlib.patches import Rectangle
|
10 |
+
|
11 |
+
from modules.Ultrastar.ultrastar_txt import UltrastarTxtValue
|
12 |
+
from modules.console_colors import ULTRASINGER_HEAD
|
13 |
+
from modules.Pitcher.pitched_data import PitchedData
|
14 |
+
from modules.Pitcher.pitcher import get_pitched_data_with_high_confidence
|
15 |
+
from modules.Speech_Recognition.TranscribedData import TranscribedData
|
16 |
+
|
17 |
+
|
18 |
+
@dataclass
|
19 |
+
class PlottedNote:
|
20 |
+
"""Plotted note"""
|
21 |
+
|
22 |
+
note: str
|
23 |
+
frequency: float
|
24 |
+
frequency_log_10: float
|
25 |
+
octave: int
|
26 |
+
|
27 |
+
|
28 |
+
NOTES = ["C", "C#", "D", "D#", "E", "F", "F#", "G", "G#", "A", "A#", "B"]
|
29 |
+
OCTAVES = [0, 1, 2, 3, 4, 5, 6, 7, 8]
|
30 |
+
X_TICK_SIZE = 5
|
31 |
+
|
32 |
+
|
33 |
+
def get_frequency_range(midi_note: str) -> float:
|
34 |
+
"""Get frequency range"""
|
35 |
+
midi = librosa.note_to_midi(midi_note)
|
36 |
+
frequency_range = librosa.midi_to_hz(midi + 1) - librosa.midi_to_hz(midi)
|
37 |
+
return frequency_range
|
38 |
+
|
39 |
+
|
40 |
+
def create_plot_notes(notes: list[str], octaves: list[int]) -> list[PlottedNote]:
|
41 |
+
"""Create list of notes for plot y axis"""
|
42 |
+
plotted_notes = []
|
43 |
+
for octave in octaves:
|
44 |
+
for note in notes:
|
45 |
+
note_with_octave = note + str(octave)
|
46 |
+
frequency = librosa.note_to_hz(note_with_octave)
|
47 |
+
frequency_log_10 = numpy.log10([frequency])[0]
|
48 |
+
plotted_notes.append(
|
49 |
+
PlottedNote(note_with_octave, frequency, frequency_log_10, octave)
|
50 |
+
)
|
51 |
+
|
52 |
+
return plotted_notes
|
53 |
+
|
54 |
+
|
55 |
+
PLOTTED_NOTES = create_plot_notes(NOTES, OCTAVES)
|
56 |
+
|
57 |
+
|
58 |
+
def plot(
|
59 |
+
pitched_data: PitchedData,
|
60 |
+
output_path: str,
|
61 |
+
transcribed_data: list[TranscribedData] = None,
|
62 |
+
ultrastar_class: UltrastarTxtValue = None,
|
63 |
+
midi_notes: list[str] = None,
|
64 |
+
title: str = None,
|
65 |
+
) -> None:
|
66 |
+
"""Plot transcribed data"""
|
67 |
+
|
68 |
+
# determine time between to datapoints if there is no gap (this is the step size crepe ran with)
|
69 |
+
step_size = pitched_data.times[1]
|
70 |
+
pitched_data = get_pitched_data_with_high_confidence(pitched_data)
|
71 |
+
|
72 |
+
if len(pitched_data.frequencies) < 2:
|
73 |
+
print(f"{ULTRASINGER_HEAD} Plot can't be created; too few datapoints")
|
74 |
+
return
|
75 |
+
|
76 |
+
print(
|
77 |
+
f"{ULTRASINGER_HEAD} Creating plot{': ' + title if title is not None else ''}"
|
78 |
+
)
|
79 |
+
|
80 |
+
# map each frequency to logarithm with base 10 for a linear progression of values between the musical notes
|
81 |
+
# see http://www.phon.ox.ac.uk/jcoleman/LOGARITH.htm
|
82 |
+
frequencies_log_10 = numpy.log10(pitched_data.frequencies)
|
83 |
+
|
84 |
+
# add 'nan' where there are gaps for frequency values so the graph is only continuous where it should be
|
85 |
+
pitched_data_with_gaps = create_gaps(pitched_data, step_size)
|
86 |
+
frequencies_log_10_with_gaps = numpy.log10(pitched_data_with_gaps.frequencies)
|
87 |
+
|
88 |
+
# dynamically set the minimum and maximum values for x and y axes based on data
|
89 |
+
y_lower_bound, y_upper_bound = determine_bounds(frequencies_log_10)
|
90 |
+
ymin = max(0, y_lower_bound - 0.05)
|
91 |
+
ymax = y_upper_bound + 0.05
|
92 |
+
plt.ylim(ymin, ymax)
|
93 |
+
xmin = min(pitched_data.times)
|
94 |
+
xmax = max(pitched_data.times)
|
95 |
+
plt.xlim(xmin, xmax)
|
96 |
+
|
97 |
+
plt.xlabel("Time (s)")
|
98 |
+
plt.ylabel("log10 of Frequency (Hz)")
|
99 |
+
|
100 |
+
notes_within_range = set_axes_ticks_and_labels(pitched_data.times, ymin, ymax)
|
101 |
+
|
102 |
+
# draw horizontal lines for each note
|
103 |
+
for note in notes_within_range:
|
104 |
+
color = "b"
|
105 |
+
if note.note.startswith("C") and not note.note.startswith("C#"):
|
106 |
+
color = "r"
|
107 |
+
plt.axhline(y=note.frequency_log_10, color=color, linestyle="-", linewidth=0.2)
|
108 |
+
|
109 |
+
# create line and scatter plot of pitched data
|
110 |
+
plt.plot(pitched_data_with_gaps.times, frequencies_log_10_with_gaps, linewidth=0.1)
|
111 |
+
scatter_path_collection = plt.scatter(
|
112 |
+
pitched_data_with_gaps.times,
|
113 |
+
frequencies_log_10_with_gaps,
|
114 |
+
s=5,
|
115 |
+
c=pitched_data_with_gaps.confidence,
|
116 |
+
cmap=plt.colormaps.get_cmap("gray").reversed(),
|
117 |
+
vmin=0,
|
118 |
+
vmax=1,
|
119 |
+
)
|
120 |
+
plt.figure(1).colorbar(scatter_path_collection, label="confidence")
|
121 |
+
|
122 |
+
set_figure_dimensions(xmax - xmin, y_upper_bound - y_lower_bound)
|
123 |
+
|
124 |
+
plot_words(transcribed_data, ultrastar_class, midi_notes)
|
125 |
+
|
126 |
+
if title is not None:
|
127 |
+
plt.title(label=title)
|
128 |
+
|
129 |
+
plt.figure(1).tight_layout(h_pad=1.4)
|
130 |
+
|
131 |
+
dpi = 200
|
132 |
+
plt.savefig(
|
133 |
+
os.path.join(
|
134 |
+
output_path, f"plot{'' if title is None else '_' + snake(title)}.svg"
|
135 |
+
),
|
136 |
+
dpi=dpi,
|
137 |
+
)
|
138 |
+
plt.clf()
|
139 |
+
plt.cla()
|
140 |
+
|
141 |
+
|
142 |
+
def set_axes_ticks_and_labels(confidence, ymin, ymax):
|
143 |
+
"""Set ticks and their labels for x and y axes"""
|
144 |
+
notes_within_range = [
|
145 |
+
x for x in PLOTTED_NOTES if ymin <= x.frequency_log_10 <= ymax
|
146 |
+
]
|
147 |
+
plt.yticks(
|
148 |
+
[x.frequency_log_10 for x in notes_within_range],
|
149 |
+
[x.note for x in notes_within_range],
|
150 |
+
)
|
151 |
+
|
152 |
+
first_time = min(confidence)
|
153 |
+
min_tick = first_time // X_TICK_SIZE * X_TICK_SIZE + X_TICK_SIZE
|
154 |
+
|
155 |
+
last_time = max(confidence)
|
156 |
+
max_tick = last_time // X_TICK_SIZE * X_TICK_SIZE + 0.1
|
157 |
+
ticks = numpy.arange(min_tick, max_tick, X_TICK_SIZE, dtype=int).tolist()
|
158 |
+
|
159 |
+
if len(ticks) == 0 or ticks[0] != first_time:
|
160 |
+
ticks.insert(0, first_time)
|
161 |
+
|
162 |
+
if len(ticks) == 1 or ticks[-1] != last_time:
|
163 |
+
ticks.append(last_time)
|
164 |
+
|
165 |
+
plt.xticks(ticks, [str(x) for x in ticks])
|
166 |
+
return notes_within_range
|
167 |
+
|
168 |
+
|
169 |
+
def determine_bounds(frequency_log_10: list[float]) -> tuple[float, float]:
|
170 |
+
"""Determine bounds based on 1st and 99th percentile of data"""
|
171 |
+
lower = numpy.percentile(numpy.array(frequency_log_10), 1)
|
172 |
+
upper = numpy.percentile(numpy.array(frequency_log_10), 99)
|
173 |
+
|
174 |
+
return lower, upper
|
175 |
+
|
176 |
+
|
177 |
+
def set_figure_dimensions(time_range, frequency_log_10_range):
|
178 |
+
"""Dynamically scale the figure dimensions based on the duration/frequency amplitude of the song"""
|
179 |
+
height = frequency_log_10_range / 0.06
|
180 |
+
width = time_range / 2
|
181 |
+
|
182 |
+
plt.figure(1).set_figwidth(max(6.4, width))
|
183 |
+
plt.figure(1).set_figheight(max(4, height))
|
184 |
+
|
185 |
+
|
186 |
+
def create_gaps(pitched_data: PitchedData, step_size: float) -> PitchedData:
|
187 |
+
"""
|
188 |
+
Add 'nan' where there are no high confidence frequency values.
|
189 |
+
This way the graph is only continuous where it should be.
|
190 |
+
|
191 |
+
"""
|
192 |
+
pitched_data_with_gaps = PitchedData([], [], [])
|
193 |
+
|
194 |
+
previous_time = 0
|
195 |
+
for i, time in enumerate(pitched_data.times):
|
196 |
+
comes_right_after_previous = time - previous_time <= step_size
|
197 |
+
previous_frequency_is_not_gap = (
|
198 |
+
len(pitched_data_with_gaps.frequencies) > 0
|
199 |
+
and str(pitched_data_with_gaps.frequencies[-1]) != "nan"
|
200 |
+
)
|
201 |
+
if previous_frequency_is_not_gap and not comes_right_after_previous:
|
202 |
+
pitched_data_with_gaps.times.append(time)
|
203 |
+
pitched_data_with_gaps.frequencies.append(float("nan"))
|
204 |
+
pitched_data_with_gaps.confidence.append(pitched_data.confidence[i])
|
205 |
+
|
206 |
+
pitched_data_with_gaps.times.append(time)
|
207 |
+
pitched_data_with_gaps.frequencies.append(pitched_data.frequencies[i])
|
208 |
+
pitched_data_with_gaps.confidence.append(pitched_data.confidence[i])
|
209 |
+
|
210 |
+
previous_time = time
|
211 |
+
|
212 |
+
return pitched_data_with_gaps
|
213 |
+
|
214 |
+
|
215 |
+
def plot_word(midi_note: str, start, end, word):
|
216 |
+
note_frequency = librosa.note_to_hz(midi_note)
|
217 |
+
frequency_range = get_frequency_range(midi_note)
|
218 |
+
|
219 |
+
half_frequency_range = frequency_range / 2
|
220 |
+
height = (
|
221 |
+
numpy.log10([note_frequency + half_frequency_range])[0]
|
222 |
+
- numpy.log10([note_frequency - half_frequency_range])[0]
|
223 |
+
)
|
224 |
+
xy_start_pos = (
|
225 |
+
start,
|
226 |
+
numpy.log10([note_frequency - half_frequency_range])[0],
|
227 |
+
)
|
228 |
+
width = end - start
|
229 |
+
rect = Rectangle(
|
230 |
+
xy_start_pos,
|
231 |
+
width,
|
232 |
+
height,
|
233 |
+
edgecolor="none",
|
234 |
+
facecolor="red",
|
235 |
+
alpha=0.5,
|
236 |
+
)
|
237 |
+
plt.gca().add_patch(rect)
|
238 |
+
plt.text(start + width / 4, numpy.log10([note_frequency + half_frequency_range])[0], word, rotation=90)
|
239 |
+
|
240 |
+
|
241 |
+
def plot_words(transcribed_data: list[TranscribedData], ultrastar_class: UltrastarTxtValue, midi_notes: list[str]):
|
242 |
+
"""Draw rectangles for each word"""
|
243 |
+
if transcribed_data is not None:
|
244 |
+
for i, data in enumerate(transcribed_data):
|
245 |
+
plot_word(midi_notes[i], data.start, data.end, data.word)
|
246 |
+
|
247 |
+
elif ultrastar_class is not None:
|
248 |
+
for i, data in enumerate(ultrastar_class.words):
|
249 |
+
plot_word(midi_notes[i], ultrastar_class.startTimes[i], ultrastar_class.endTimes[i],
|
250 |
+
ultrastar_class.words[i])
|
251 |
+
|
252 |
+
|
253 |
+
def snake(s):
|
254 |
+
"""Turn any string into a snake case string"""
|
255 |
+
return "_".join(
|
256 |
+
sub(
|
257 |
+
"([A-Z][a-z]+)", r" \1", sub("([A-Z]+)", r" \1", s.replace("-", " "))
|
258 |
+
).split()
|
259 |
+
).lower()
|
260 |
+
|
261 |
+
|
262 |
+
def plot_spectrogram(audio_seperation_path: str,
|
263 |
+
output_path: str,
|
264 |
+
title: str = "Spectrogram",
|
265 |
+
|
266 |
+
) -> None:
|
267 |
+
"""Plot spectrogram of data"""
|
268 |
+
|
269 |
+
print(
|
270 |
+
f"{ULTRASINGER_HEAD} Creating plot{': ' + title}"
|
271 |
+
)
|
272 |
+
|
273 |
+
audio, sr = librosa.load(audio_seperation_path, sr=None)
|
274 |
+
powerSpectrum, frequenciesFound, time, imageAxis = plt.specgram(audio, Fs=sr)
|
275 |
+
plt.colorbar()
|
276 |
+
|
277 |
+
if title is not None:
|
278 |
+
plt.title(label=title)
|
279 |
+
|
280 |
+
plt.xlabel("Time (s)")
|
281 |
+
plt.ylabel("Frequency (Hz)")
|
282 |
+
|
283 |
+
ymin = 0
|
284 |
+
ymax = max(frequenciesFound) + 0.05
|
285 |
+
plt.ylim(ymin, ymax)
|
286 |
+
xmin = 0
|
287 |
+
xmax = max(time)
|
288 |
+
plt.xlim(xmin, xmax)
|
289 |
+
|
290 |
+
plt.figure(1).set_figwidth(max(6.4, xmax))
|
291 |
+
plt.figure(1).set_figheight(4)
|
292 |
+
|
293 |
+
plt.figure(1).tight_layout(h_pad=1.4)
|
294 |
+
|
295 |
+
dpi = 200
|
296 |
+
plt.savefig(
|
297 |
+
os.path.join(
|
298 |
+
output_path, f"plot{'_' + snake(title)}.svg"
|
299 |
+
),
|
300 |
+
dpi=dpi,
|
301 |
+
)
|
302 |
+
plt.clf()
|
303 |
+
plt.cla()
|
src/modules/timer.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import atexit
|
2 |
+
from functools import reduce
|
3 |
+
from time import process_time
|
4 |
+
|
5 |
+
from modules.console_colors import ULTRASINGER_HEAD
|
6 |
+
|
7 |
+
|
8 |
+
def seconds_to_str(t):
|
9 |
+
"""Format seconds to string"""
|
10 |
+
return "%d:%02d:%02d.%03d" % reduce(
|
11 |
+
lambda ll, b: divmod(ll[0], b) + ll[1:], [(t * 1000,), 1000, 60, 60]
|
12 |
+
)
|
13 |
+
|
14 |
+
|
15 |
+
def log(s):
|
16 |
+
"""Log line with optional time elapsed"""
|
17 |
+
print(f"{ULTRASINGER_HEAD} {seconds_to_str(process_time())} - {s}")
|
18 |
+
|
19 |
+
|
20 |
+
def end_log():
|
21 |
+
"""Log at program end"""
|
22 |
+
log("End Program")
|
23 |
+
|
24 |
+
|
25 |
+
atexit.register(end_log)
|
26 |
+
log("Initialized...")
|