"""Device detection module.""" import torch import os import tensorflow as tf from modules.console_colors import ULTRASINGER_HEAD, red_highlighted, blue_highlighted tensorflow_gpu_supported = False pytorch_gpu_supported = False def check_gpu_support() -> tuple[bool, bool]: """Check worker device (e.g cuda or cpu) supported by tensorflow and pytorch""" print(f"{ULTRASINGER_HEAD} Checking GPU support for {blue_highlighted('tensorflow')} and {blue_highlighted('pytorch')}.") tensorflow_gpu_supported = False pytorch_gpu_supported = False gpus = tf.config.list_physical_devices('GPU') if gpus: tensorflow_gpu_supported = True print(f"{ULTRASINGER_HEAD} {blue_highlighted('tensorflow')} - using {red_highlighted('cuda')} gpu.") else: print(f"{ULTRASINGER_HEAD} {blue_highlighted('tensorflow')} - there are no {red_highlighted('cuda')} devices available -> Using {red_highlighted('cpu')}.") if os.name == 'nt': print(f"{ULTRASINGER_HEAD} {blue_highlighted('tensorflow')} - versions above 2.10 dropped GPU support for Windows, refer to the readme for possible solutions.") pytorch_gpu_supported = torch.cuda.is_available() if not pytorch_gpu_supported: print( f"{ULTRASINGER_HEAD} {blue_highlighted('pytorch')} - there are no {red_highlighted('cuda')} devices available -> Using {red_highlighted('cpu')}." ) else: print(f"{ULTRASINGER_HEAD} {blue_highlighted('pytorch')} - using {red_highlighted('cuda')} gpu.") return 'cuda' if tensorflow_gpu_supported else 'cpu', 'cuda' if pytorch_gpu_supported else 'cpu'