Spaces:
Runtime error
Runtime error
File size: 4,911 Bytes
cdee5b8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 |
import sys
from face_detection import FaceAlignment,LandmarksType
from os import listdir, path
import subprocess
import numpy as np
import cv2
import pickle
import os
import json
from mmpose.apis import inference_topdown, init_model
from mmpose.structures import merge_data_samples
import torch
from tqdm import tqdm
# initialize the mmpose model
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
config_file = './musetalk/utils/dwpose/rtmpose-l_8xb32-270e_coco-ubody-wholebody-384x288.py'
checkpoint_file = './models/dwpose/dw-ll_ucoco_384.pth'
model = init_model(config_file, checkpoint_file, device=device)
# initialize the face detection model
device = "cuda" if torch.cuda.is_available() else "cpu"
fa = FaceAlignment(LandmarksType._2D, flip_input=False,device=device)
# maker if the bbox is not sufficient
coord_placeholder = (0.0,0.0,0.0,0.0)
def resize_landmark(landmark, w, h, new_w, new_h):
w_ratio = new_w / w
h_ratio = new_h / h
landmark_norm = landmark / [w, h]
landmark_resized = landmark_norm * [new_w, new_h]
return landmark_resized
def read_imgs(img_list):
frames = []
print('reading images...')
for img_path in tqdm(img_list):
frame = cv2.imread(img_path)
frames.append(frame)
return frames
def get_landmark_and_bbox(img_list,upperbondrange =0):
frames = read_imgs(img_list)
batch_size_fa = 1
batches = [frames[i:i + batch_size_fa] for i in range(0, len(frames), batch_size_fa)]
coords_list = []
landmarks = []
if upperbondrange != 0:
print('get key_landmark and face bounding boxes with the bbox_shift:',upperbondrange)
else:
print('get key_landmark and face bounding boxes with the default value')
average_range_minus = []
average_range_plus = []
for fb in tqdm(batches):
results = inference_topdown(model, np.asarray(fb)[0])
results = merge_data_samples(results)
keypoints = results.pred_instances.keypoints
face_land_mark= keypoints[0][23:91]
face_land_mark = face_land_mark.astype(np.int32)
# get bounding boxes by face detetion
bbox = fa.get_detections_for_batch(np.asarray(fb))
# adjust the bounding box refer to landmark
# Add the bounding box to a tuple and append it to the coordinates list
for j, f in enumerate(bbox):
if f is None: # no face in the image
coords_list += [coord_placeholder]
continue
half_face_coord = face_land_mark[29]#np.mean([face_land_mark[28], face_land_mark[29]], axis=0)
range_minus = (face_land_mark[30]- face_land_mark[29])[1]
range_plus = (face_land_mark[29]- face_land_mark[28])[1]
average_range_minus.append(range_minus)
average_range_plus.append(range_plus)
if upperbondrange != 0:
half_face_coord[1] = upperbondrange+half_face_coord[1] #手动调整 + 向下(偏29) - 向上(偏28)
half_face_dist = np.max(face_land_mark[:,1]) - half_face_coord[1]
upper_bond = half_face_coord[1]-half_face_dist
f_landmark = (np.min(face_land_mark[:, 0]),int(upper_bond),np.max(face_land_mark[:, 0]),np.max(face_land_mark[:,1]))
x1, y1, x2, y2 = f_landmark
if y2-y1<=0 or x2-x1<=0 or x1<0: # if the landmark bbox is not suitable, reuse the bbox
coords_list += [f]
w,h = f[2]-f[0], f[3]-f[1]
print("error bbox:",f)
else:
coords_list += [f_landmark]
print("********************************************bbox_shift parameter adjustment**********************************************************")
print(f"Total frame:「{len(frames)}」 Manually adjust range : [ -{int(sum(average_range_minus) / len(average_range_minus))}~{int(sum(average_range_plus) / len(average_range_plus))} ] , the current value: {upperbondrange}")
print("*************************************************************************************************************************************")
return coords_list,frames
if __name__ == "__main__":
img_list = ["./results/lyria/00000.png","./results/lyria/00001.png","./results/lyria/00002.png","./results/lyria/00003.png"]
crop_coord_path = "./coord_face.pkl"
coords_list,full_frames = get_landmark_and_bbox(img_list)
with open(crop_coord_path, 'wb') as f:
pickle.dump(coords_list, f)
for bbox, frame in zip(coords_list,full_frames):
if bbox == coord_placeholder:
continue
x1, y1, x2, y2 = bbox
crop_frame = frame[y1:y2, x1:x2]
print('Cropped shape', crop_frame.shape)
#cv2.imwrite(path.join(save_dir, '{}.png'.format(i)),full_frames[i][0][y1:y2, x1:x2])
print(coords_list)
|