Spaces:
Running
on
A10G
Running
on
A10G
from PIL import Image | |
import numpy as np | |
import cv2 | |
from face_parsing import FaceParsing | |
fp = FaceParsing() | |
def get_crop_box(box, expand): | |
x, y, x1, y1 = box | |
x_c, y_c = (x+x1)//2, (y+y1)//2 | |
w, h = x1-x, y1-y | |
s = int(max(w, h)//2*expand) | |
crop_box = [x_c-s, y_c-s, x_c+s, y_c+s] | |
return crop_box, s | |
def face_seg(image): | |
seg_image = fp(image) | |
if seg_image is None: | |
print("error, no person_segment") | |
return None | |
seg_image = seg_image.resize(image.size) | |
return seg_image | |
def get_image(image,face,face_box,upper_boundary_ratio = 0.5,expand=1.2): | |
#print(image.shape) | |
#print(face.shape) | |
body = Image.fromarray(image[:,:,::-1]) | |
face = Image.fromarray(face[:,:,::-1]) | |
x, y, x1, y1 = face_box | |
#print(x1-x,y1-y) | |
crop_box, s = get_crop_box(face_box, expand) | |
x_s, y_s, x_e, y_e = crop_box | |
face_position = (x, y) | |
face_large = body.crop(crop_box) | |
ori_shape = face_large.size | |
mask_image = face_seg(face_large) | |
mask_small = mask_image.crop((x-x_s, y-y_s, x1-x_s, y1-y_s)) | |
mask_image = Image.new('L', ori_shape, 0) | |
mask_image.paste(mask_small, (x-x_s, y-y_s, x1-x_s, y1-y_s)) | |
# keep upper_boundary_ratio of talking area | |
width, height = mask_image.size | |
top_boundary = int(height * upper_boundary_ratio) | |
modified_mask_image = Image.new('L', ori_shape, 0) | |
modified_mask_image.paste(mask_image.crop((0, top_boundary, width, height)), (0, top_boundary)) | |
blur_kernel_size = int(0.1 * ori_shape[0] // 2 * 2) + 1 | |
mask_array = cv2.GaussianBlur(np.array(modified_mask_image), (blur_kernel_size, blur_kernel_size), 0) | |
mask_image = Image.fromarray(mask_array) | |
face_large.paste(face, (x-x_s, y-y_s, x1-x_s, y1-y_s)) | |
body.paste(face_large, crop_box[:2], mask_image) | |
body = np.array(body) | |
return body[:,:,::-1] | |