Spaces:
Sleeping
Sleeping
import torch | |
import time | |
import os | |
import cv2 | |
import numpy as np | |
from PIL import Image | |
from .model import BiSeNet | |
import torchvision.transforms as transforms | |
class FaceParsing(): | |
def __init__(self): | |
self.net = self.model_init() | |
self.preprocess = self.image_preprocess() | |
def model_init(self, | |
resnet_path='./models/face-parse-bisent/resnet18-5c106cde.pth', | |
model_pth='./models/face-parse-bisent/79999_iter.pth'): | |
net = BiSeNet(resnet_path) | |
if torch.cuda.is_available(): | |
net.cuda() | |
net.load_state_dict(torch.load(model_pth)) | |
else: | |
net.load_state_dict(torch.load(model_pth, map_location=torch.device('cpu'))) | |
net.eval() | |
return net | |
def image_preprocess(self): | |
return transforms.Compose([ | |
transforms.ToTensor(), | |
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)), | |
]) | |
def __call__(self, image, size=(512, 512)): | |
if isinstance(image, str): | |
image = Image.open(image) | |
width, height = image.size | |
with torch.no_grad(): | |
image = image.resize(size, Image.BILINEAR) | |
img = self.preprocess(image) | |
if torch.cuda.is_available(): | |
img = torch.unsqueeze(img, 0).cuda() | |
else: | |
img = torch.unsqueeze(img, 0) | |
out = self.net(img)[0] | |
parsing = out.squeeze(0).cpu().numpy().argmax(0) | |
parsing[np.where(parsing>13)] = 0 | |
parsing[np.where(parsing>=1)] = 255 | |
parsing = Image.fromarray(parsing.astype(np.uint8)) | |
return parsing | |
if __name__ == "__main__": | |
fp = FaceParsing() | |
segmap = fp('154_small.png') | |
segmap.save('res.png') | |