Spaces:
Running
on
A10G
Running
on
A10G
import sys | |
from face_detection import FaceAlignment,LandmarksType | |
from os import listdir, path | |
import subprocess | |
import numpy as np | |
import cv2 | |
import pickle | |
import os | |
import json | |
from mmpose.apis import inference_topdown, init_model | |
from mmpose.structures import merge_data_samples | |
import torch | |
from tqdm import tqdm | |
# initialize the mmpose model | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
config_file = './musetalk/utils/dwpose/rtmpose-l_8xb32-270e_coco-ubody-wholebody-384x288.py' | |
checkpoint_file = './models/dwpose/dw-ll_ucoco_384.pth' | |
model = init_model(config_file, checkpoint_file, device=device) | |
# initialize the face detection model | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
fa = FaceAlignment(LandmarksType._2D, flip_input=False,device=device) | |
# maker if the bbox is not sufficient | |
coord_placeholder = (0.0,0.0,0.0,0.0) | |
def resize_landmark(landmark, w, h, new_w, new_h): | |
w_ratio = new_w / w | |
h_ratio = new_h / h | |
landmark_norm = landmark / [w, h] | |
landmark_resized = landmark_norm * [new_w, new_h] | |
return landmark_resized | |
def read_imgs(img_list): | |
frames = [] | |
print('reading images...') | |
for img_path in tqdm(img_list): | |
frame = cv2.imread(img_path) | |
frames.append(frame) | |
return frames | |
def get_landmark_and_bbox(img_list,upperbondrange =0): | |
frames = read_imgs(img_list) | |
batch_size_fa = 1 | |
batches = [frames[i:i + batch_size_fa] for i in range(0, len(frames), batch_size_fa)] | |
coords_list = [] | |
landmarks = [] | |
if upperbondrange != 0: | |
print('get key_landmark and face bounding boxes with the bbox_shift:',upperbondrange) | |
else: | |
print('get key_landmark and face bounding boxes with the default value') | |
average_range_minus = [] | |
average_range_plus = [] | |
for fb in tqdm(batches): | |
results = inference_topdown(model, np.asarray(fb)[0]) | |
results = merge_data_samples(results) | |
keypoints = results.pred_instances.keypoints | |
face_land_mark= keypoints[0][23:91] | |
face_land_mark = face_land_mark.astype(np.int32) | |
# get bounding boxes by face detetion | |
bbox = fa.get_detections_for_batch(np.asarray(fb)) | |
# adjust the bounding box refer to landmark | |
# Add the bounding box to a tuple and append it to the coordinates list | |
for j, f in enumerate(bbox): | |
if f is None: # no face in the image | |
coords_list += [coord_placeholder] | |
continue | |
half_face_coord = face_land_mark[29]#np.mean([face_land_mark[28], face_land_mark[29]], axis=0) | |
range_minus = (face_land_mark[30]- face_land_mark[29])[1] | |
range_plus = (face_land_mark[29]- face_land_mark[28])[1] | |
average_range_minus.append(range_minus) | |
average_range_plus.append(range_plus) | |
if upperbondrange != 0: | |
half_face_coord[1] = upperbondrange+half_face_coord[1] #ζε¨θ°ζ΄ + εδΈοΌε29οΌ - εδΈοΌε28οΌ | |
half_face_dist = np.max(face_land_mark[:,1]) - half_face_coord[1] | |
upper_bond = half_face_coord[1]-half_face_dist | |
f_landmark = (np.min(face_land_mark[:, 0]),int(upper_bond),np.max(face_land_mark[:, 0]),np.max(face_land_mark[:,1])) | |
x1, y1, x2, y2 = f_landmark | |
if y2-y1<=0 or x2-x1<=0 or x1<0: # if the landmark bbox is not suitable, reuse the bbox | |
coords_list += [f] | |
w,h = f[2]-f[0], f[3]-f[1] | |
print("error bbox:",f) | |
else: | |
coords_list += [f_landmark] | |
print("********************************************bbox_shift parameter adjustment**********************************************************") | |
print(f"Total frame:γ{len(frames)}γ Manually adjust range : [ -{int(sum(average_range_minus) / len(average_range_minus))}~{int(sum(average_range_plus) / len(average_range_plus))} ] , the current value: {upperbondrange}") | |
print("*************************************************************************************************************************************") | |
return coords_list,frames | |
if __name__ == "__main__": | |
img_list = ["./results/lyria/00000.png","./results/lyria/00001.png","./results/lyria/00002.png","./results/lyria/00003.png"] | |
crop_coord_path = "./coord_face.pkl" | |
coords_list,full_frames = get_landmark_and_bbox(img_list) | |
with open(crop_coord_path, 'wb') as f: | |
pickle.dump(coords_list, f) | |
for bbox, frame in zip(coords_list,full_frames): | |
if bbox == coord_placeholder: | |
continue | |
x1, y1, x2, y2 = bbox | |
crop_frame = frame[y1:y2, x1:x2] | |
print('Cropped shape', crop_frame.shape) | |
#cv2.imwrite(path.join(save_dir, '{}.png'.format(i)),full_frames[i][0][y1:y2, x1:x2]) | |
print(coords_list) | |