Spaces:
Runtime error
Runtime error
Commit
·
41ecd0a
0
Parent(s):
Duplicate from awacke1/Image-Semantic-Search
Browse filesCo-authored-by: Aaron C Wacker <[email protected]>
- .gitattributes +30 -0
- README.md +14 -0
- app.py +186 -0
- data.csv +0 -0
- data2.csv +0 -0
- embeddings.npy +3 -0
- embeddings2.npy +3 -0
- requirements.txt +5 -0
.gitattributes
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
20 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
29 |
+
embeddings.npy filter=lfs diff=lfs merge=lfs -text
|
30 |
+
embeddings2.npy filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: 🔎NLP Image-Semantic-Search 🖼️
|
3 |
+
emoji: 🔎Img🖼️
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: green
|
6 |
+
sdk: streamlit
|
7 |
+
sdk_version: 1.2.0
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
license: mit
|
11 |
+
duplicated_from: awacke1/Image-Semantic-Search
|
12 |
+
---
|
13 |
+
|
14 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
|
app.py
ADDED
@@ -0,0 +1,186 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from html import escape
|
2 |
+
import re
|
3 |
+
import streamlit as st
|
4 |
+
import pandas as pd, numpy as np
|
5 |
+
from transformers import CLIPProcessor, CLIPModel
|
6 |
+
from st_clickable_images import clickable_images
|
7 |
+
|
8 |
+
@st.cache(
|
9 |
+
show_spinner=False,
|
10 |
+
hash_funcs={
|
11 |
+
CLIPModel: lambda _: None,
|
12 |
+
CLIPProcessor: lambda _: None,
|
13 |
+
dict: lambda _: None,
|
14 |
+
},
|
15 |
+
)
|
16 |
+
def load():
|
17 |
+
model = CLIPModel.from_pretrained("openai/clip-vit-large-patch14")
|
18 |
+
processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14")
|
19 |
+
df = {0: pd.read_csv("data.csv"), 1: pd.read_csv("data2.csv")}
|
20 |
+
embeddings = {0: np.load("embeddings.npy"), 1: np.load("embeddings2.npy")}
|
21 |
+
for k in [0, 1]:
|
22 |
+
embeddings[k] = embeddings[k] / np.linalg.norm(
|
23 |
+
embeddings[k], axis=1, keepdims=True
|
24 |
+
)
|
25 |
+
return model, processor, df, embeddings
|
26 |
+
|
27 |
+
|
28 |
+
model, processor, df, embeddings = load()
|
29 |
+
source = {0: "\nSource: Unsplash", 1: "\nSource: The Movie Database (TMDB)"}
|
30 |
+
|
31 |
+
|
32 |
+
def compute_text_embeddings(list_of_strings):
|
33 |
+
inputs = processor(text=list_of_strings, return_tensors="pt", padding=True)
|
34 |
+
result = model.get_text_features(**inputs).detach().numpy()
|
35 |
+
return result / np.linalg.norm(result, axis=1, keepdims=True)
|
36 |
+
|
37 |
+
|
38 |
+
def image_search(query, corpus, n_results=24):
|
39 |
+
positive_embeddings = None
|
40 |
+
|
41 |
+
def concatenate_embeddings(e1, e2):
|
42 |
+
if e1 is None:
|
43 |
+
return e2
|
44 |
+
else:
|
45 |
+
return np.concatenate((e1, e2), axis=0)
|
46 |
+
|
47 |
+
splitted_query = query.split("EXCLUDING ")
|
48 |
+
dot_product = 0
|
49 |
+
k = 0 if corpus == "Unsplash" else 1
|
50 |
+
if len(splitted_query[0]) > 0:
|
51 |
+
positive_queries = splitted_query[0].split(";")
|
52 |
+
for positive_query in positive_queries:
|
53 |
+
match = re.match(r"\[(Movies|Unsplash):(\d{1,5})\](.*)", positive_query)
|
54 |
+
if match:
|
55 |
+
corpus2, idx, remainder = match.groups()
|
56 |
+
idx, remainder = int(idx), remainder.strip()
|
57 |
+
k2 = 0 if corpus2 == "Unsplash" else 1
|
58 |
+
positive_embeddings = concatenate_embeddings(
|
59 |
+
positive_embeddings, embeddings[k2][idx : idx + 1, :]
|
60 |
+
)
|
61 |
+
if len(remainder) > 0:
|
62 |
+
positive_embeddings = concatenate_embeddings(
|
63 |
+
positive_embeddings, compute_text_embeddings([remainder])
|
64 |
+
)
|
65 |
+
else:
|
66 |
+
positive_embeddings = concatenate_embeddings(
|
67 |
+
positive_embeddings, compute_text_embeddings([positive_query])
|
68 |
+
)
|
69 |
+
dot_product = embeddings[k] @ positive_embeddings.T
|
70 |
+
dot_product = dot_product - np.median(dot_product, axis=0)
|
71 |
+
dot_product = dot_product / np.max(dot_product, axis=0, keepdims=True)
|
72 |
+
dot_product = np.min(dot_product, axis=1)
|
73 |
+
|
74 |
+
if len(splitted_query) > 1:
|
75 |
+
negative_queries = (" ".join(splitted_query[1:])).split(";")
|
76 |
+
negative_embeddings = compute_text_embeddings(negative_queries)
|
77 |
+
dot_product2 = embeddings[k] @ negative_embeddings.T
|
78 |
+
dot_product2 = dot_product2 - np.median(dot_product2, axis=0)
|
79 |
+
dot_product2 = dot_product2 / np.max(dot_product2, axis=0, keepdims=True)
|
80 |
+
dot_product -= np.max(np.maximum(dot_product2, 0), axis=1)
|
81 |
+
|
82 |
+
results = np.argsort(dot_product)[-1 : -n_results - 1 : -1]
|
83 |
+
return [
|
84 |
+
(
|
85 |
+
df[k].iloc[i]["path"],
|
86 |
+
df[k].iloc[i]["tooltip"] + source[k],
|
87 |
+
i,
|
88 |
+
)
|
89 |
+
for i in results
|
90 |
+
]
|
91 |
+
|
92 |
+
|
93 |
+
description = """
|
94 |
+
# Semantic image search
|
95 |
+
**Enter your query and hit enter**
|
96 |
+
"""
|
97 |
+
|
98 |
+
howto = """
|
99 |
+
- Click image to find similar images
|
100 |
+
- Use "**;**" to combine multiple queries)
|
101 |
+
- Use "**EXCLUDING**", to exclude a query
|
102 |
+
"""
|
103 |
+
|
104 |
+
|
105 |
+
def main():
|
106 |
+
st.markdown(
|
107 |
+
"""
|
108 |
+
<style>
|
109 |
+
.block-container{
|
110 |
+
max-width: 1200px;
|
111 |
+
}
|
112 |
+
div.row-widget.stRadio > div{
|
113 |
+
flex-direction:row;
|
114 |
+
display: flex;
|
115 |
+
justify-content: center;
|
116 |
+
}
|
117 |
+
div.row-widget.stRadio > div > label{
|
118 |
+
margin-left: 5px;
|
119 |
+
margin-right: 5px;
|
120 |
+
}
|
121 |
+
section.main>div:first-child {
|
122 |
+
padding-top: 0px;
|
123 |
+
}
|
124 |
+
section:not(.main)>div:first-child {
|
125 |
+
padding-top: 30px;
|
126 |
+
}
|
127 |
+
div.reportview-container > section:first-child{
|
128 |
+
max-width: 320px;
|
129 |
+
}
|
130 |
+
#MainMenu {
|
131 |
+
visibility: hidden;
|
132 |
+
}
|
133 |
+
footer {
|
134 |
+
visibility: hidden;
|
135 |
+
}
|
136 |
+
</style>""",
|
137 |
+
unsafe_allow_html=True,
|
138 |
+
)
|
139 |
+
st.sidebar.markdown(description)
|
140 |
+
with st.sidebar.expander("Advanced use"):
|
141 |
+
st.markdown(howto)
|
142 |
+
|
143 |
+
|
144 |
+
st.sidebar.markdown(f"Try these test prompts: Lord of the Rings, Interstellar, Back to the Future, Avengers, The Matrix, WALL·E, Castle , Dune, Blade Runner, Guardians of the Galaxy, Aliens, Her, Legend of the Ten Rings, Harry Potter, Logan, Dragon, Scissorhands, Captain, Deadpool, ThorArrivval, Wick, Peaks, Labyrinth, Terabithia, RoboCop, Wonder Woman, Meteor, NYC, Stork, Pink, Yellow, Orange, Blue, tulip, dog, Dragon, sunrise, kitten, Swimming, jellyfish, Beach, puppy, Coral")
|
145 |
+
st.sidebar.markdown(f"Unsplash has categories that match: backgrounds, photos, nature, iphone, etc")
|
146 |
+
st.sidebar.markdown(f"Unsplash images contain animals, apps, events, feelings, food, travel, nature, people, religion, sports, things, stock")
|
147 |
+
st.sidebar.markdown(f"Unsplash things include flag, tree, clock, money, tattoo, arrow, book, car, fireworks, ghost, health, kiss, dance, balloon, crown, eye, house, music, airplane, lighthouse, typewriter, toys")
|
148 |
+
st.sidebar.markdown(f"unsplash feelings include funny, heart, love, cool, congratulations, love, scary, cute, friendship, inspirational, hug, sad, cursed, beautiful, crazy, respect, transformation, peaceful, happy")
|
149 |
+
st.sidebar.markdown(f"unsplash people contain baby, life, women, family, girls, pregnancy, society, old people, musician, attractive, bohemian")
|
150 |
+
st.sidebar.markdown(f"imagenet queries include: photo of, photo of many, sculpture of, rendering of, graffiti of, tattoo of, embroidered, drawing of, plastic, black and white, painting, video game, doodle, origami, sketch, etc")
|
151 |
+
|
152 |
+
|
153 |
+
_, c, _ = st.columns((1, 3, 1))
|
154 |
+
if "query" in st.session_state:
|
155 |
+
query = c.text_input("", value=st.session_state["query"])
|
156 |
+
else:
|
157 |
+
|
158 |
+
query = c.text_input("", value="lighthouse")
|
159 |
+
corpus = st.radio("", ["Unsplash"])
|
160 |
+
#corpus = st.radio("", ["Unsplash", "Movies"])
|
161 |
+
if len(query) > 0:
|
162 |
+
results = image_search(query, corpus)
|
163 |
+
clicked = clickable_images(
|
164 |
+
[result[0] for result in results],
|
165 |
+
titles=[result[1] for result in results],
|
166 |
+
div_style={
|
167 |
+
"display": "flex",
|
168 |
+
"justify-content": "center",
|
169 |
+
"flex-wrap": "wrap",
|
170 |
+
},
|
171 |
+
img_style={"margin": "2px", "height": "200px"},
|
172 |
+
)
|
173 |
+
if clicked >= 0:
|
174 |
+
change_query = False
|
175 |
+
if "last_clicked" not in st.session_state:
|
176 |
+
change_query = True
|
177 |
+
else:
|
178 |
+
if clicked != st.session_state["last_clicked"]:
|
179 |
+
change_query = True
|
180 |
+
if change_query:
|
181 |
+
st.session_state["query"] = f"[{corpus}:{results[clicked][2]}]"
|
182 |
+
st.experimental_rerun()
|
183 |
+
|
184 |
+
|
185 |
+
if __name__ == "__main__":
|
186 |
+
main()
|
data.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
data2.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
embeddings.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:64515f7d3d71137e2944f2c3d72c8df3e684b5d6a6ff7dcebb92370f7326ccfd
|
3 |
+
size 76800128
|
embeddings2.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3d730b33e758c2648419a96ac86d39516c59795e613c35700d3a64079e5a9a27
|
3 |
+
size 25098368
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
transformers
|
3 |
+
numpy
|
4 |
+
pandas
|
5 |
+
st-clickable-images
|