AndrewLam489's picture
Update app.py
2628138 verified
raw
history blame
3.26 kB
# import cv2
# import streamlit as st
# from streamlit_webrtc import webrtc_streamer, VideoHTMLAttributes
# import numpy as np
# import av
# st.title("OpenCV Filters on Video Stream")
# filter = "none"
# def transform(frame: av.VideoFrame):
# img = frame.to_ndarray(format="bgr24")
# if filter == "blur":
# img = cv2.GaussianBlur(img, (21, 21), 0)
# elif filter == "canny":
# img = cv2.cvtColor(cv2.Canny(img, 100, 200), cv2.COLOR_GRAY2BGR)
# elif filter == "grayscale":
# # We convert the image twice because the first conversion returns a 2D array.
# # the second conversion turns it back to a 3D array.
# img = cv2.cvtColor(cv2.cvtColor(img, cv2.COLOR_BGR2GRAY), cv2.COLOR_GRAY2BGR)
# elif filter == "sepia":
# kernel = np.array(
# [[0.272, 0.534, 0.131], [0.349, 0.686, 0.168], [0.393, 0.769, 0.189]]
# )
# img = cv2.transform(img, kernel)
# elif filter == "invert":
# img = cv2.bitwise_not(img)
# elif filter == "none":
# pass
# return av.VideoFrame.from_ndarray(img, format="bgr24")
# col1, col2, col3, col4, col5, col6 = st.columns([1, 1, 1, 1, 1, 1])
# with col1:
# if st.button("None"):
# filter = "none"
# with col2:
# if st.button("Blur"):
# filter = "blur"
# with col3:
# if st.button("Grayscale"):
# filter = "grayscale"
# with col4:
# if st.button("Sepia"):
# filter = "sepia"
# with col5:
# if st.button("Canny"):
# filter = "canny"
# with col6:
# if st.button("Invert"):
# filter = "invert"
# webrtc_streamer(
# key="streamer",
# video_frame_callback=transform,
# sendback_audio=False
# )
import cv2
import streamlit as st
from streamlit_webrtc import webrtc_streamer
import numpy as np
import av
st.title("OpenCV Filters on Video Stream")
# Define the filter state variable
filter = "none"
def transform(frame: av.VideoFrame):
img = frame.to_ndarray(format="bgr24")
# Apply the selected filter
if filter == "blur":
img = cv2.GaussianBlur(img, (21, 21), 0)
elif filter == "canny":
img = cv2.cvtColor(cv2.Canny(img, 100, 200), cv2.COLOR_GRAY2BGR)
elif filter == "grayscale":
img = cv2.cvtColor(cv2.cvtColor(img, cv2.COLOR_BGR2GRAY), cv2.COLOR_GRAY2BGR)
elif filter == "sepia":
kernel = np.array([[0.272, 0.534, 0.131], [0.349, 0.686, 0.168], [0.393, 0.769, 0.189]])
img = cv2.transform(img, kernel)
elif filter == "invert":
img = cv2.bitwise_not(img)
return av.VideoFrame.from_ndarray(img, format="bgr24")
# Streamlit buttons to choose filters
col1, col2, col3, col4, col5, col6 = st.columns([1, 1, 1, 1, 1, 1])
with col1:
if st.button("None"):
filter = "none"
with col2:
if st.button("Blur"):
filter = "blur"
with col3:
if st.button("Grayscale"):
filter = "grayscale"
with col4:
if st.button("Sepia"):
filter = "sepia"
with col5:
if st.button("Canny"):
filter = "canny"
with col6:
if st.button("Invert"):
filter = "invert"
# Display the video stream
webrtc_streamer(
key="streamer",
video_frame_callback=transform,
sendback_audio=False
)