# Implementation from https://einops.rocks/pytorch-examples.html slightly changed import math from typing import Tuple import torch from torch import nn from einops import rearrange, repeat class MultiHeadAttention(nn.Module): """ This is a slightly modified version of the original implementation from https://einops.rocks/pytorch-examples.html of multihead attention. It keeps the original dimension division per head and masks the attention matrix before and after the softmax to support full row masking. Args: d_model: the input feature dimension of the model n_head: the number of heads in the multihead attention d_k: the dimension of the key and query in the multihead attention d_v: the dimension of the value in the multihead attention """ def __init__(self, d_model: int, n_head: int, d_k: torch.Tensor, d_v: torch.Tensor): super().__init__() self.n_head = n_head self.w_qs = nn.Linear(d_model, int(d_k / n_head) * n_head) self.w_ks = nn.Linear(d_model, int(d_k / n_head) * n_head) self.w_vs = nn.Linear(d_model, int(d_v / n_head) * n_head) self.w_rs = nn.Linear(d_model, int(d_v / n_head) * n_head) nn.init.normal_(self.w_qs.weight, mean=0, std=math.sqrt(2.0 / (d_model + d_k))) nn.init.normal_(self.w_ks.weight, mean=0, std=math.sqrt(2.0 / (d_model + d_k))) nn.init.normal_(self.w_vs.weight, mean=0, std=math.sqrt(2.0 / (d_model + d_v))) nn.init.normal_(self.w_rs.weight, mean=0, std=math.sqrt(2.0 / (d_model + d_v))) self.fc = nn.Linear(int(d_v / n_head) * n_head, d_model) nn.init.xavier_normal_(self.fc.weight) self.layer_norm = nn.LayerNorm(d_model) def forward( self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, mask: torch.Tensor = None, ) -> Tuple[torch.Tensor, torch.Tensor]: """ Compute the masked multi-head attention given the query, key and value tensors. Args: q: the query tensor of shape [batch_size, number_of_agents, d_model] k: the key tensor of shape [batch_size, number_of_objects, d_model] v: the value tensor of shape [batch_size, number_of_objects, d_model] mask: the mask tensor of shape [batch_size, number_of_agents, number_of_objects] Returns: [ The attention output tensor of shape [batch_size, number_of_agents, d_model], The attention matrix of shape [batch_size, number_of_agents, number_of_objects] ] """ residual = q.clone() r = self.w_rs(q) q = rearrange(self.w_qs(q), "b a (head k) -> head b a k", head=self.n_head) k = rearrange(self.w_ks(k), "b o (head k) -> head b o k", head=self.n_head) v = rearrange(self.w_vs(v), "b o (head v) -> head b o v", head=self.n_head) attn = torch.einsum("hbak,hbok->hbao", [q, k]) / math.sqrt(q.shape[-1]) if mask is not None: # b: batch, a: agent, o: object, h: head mask = repeat(mask, "b a o -> h b a o", h=self.n_head) attn = attn.masked_fill(mask == 0, -math.inf) attn = torch.softmax(attn, dim=3) # Here we need to mask again because some lines might be all -inf in the softmax which gives Nan... attn = attn.masked_fill(mask == 0, 0) output = torch.einsum("hbao,hbov->hbav", [attn, v]) output = rearrange(output, "head b a v -> b a (head v)") output = self.fc(output * r) output = self.layer_norm(output + residual) return output, attn