TRaw commited on
Commit
da3d91b
·
1 Parent(s): 6ba1e03

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -50
app.py CHANGED
@@ -1,56 +1,17 @@
 
1
  import gradio as gr
2
- from PIL import Image
3
- import numpy as np
4
- import mlx.core as mx
5
- from stable_diffusion import StableDiffusion
6
 
7
- def generate_images(prompt, n_images=4, steps=50, cfg=7.5, negative_prompt="", n_rows=1):
8
- sd = StableDiffusion()
9
 
10
- # Generate the latent vectors using diffusion
11
- latents = sd.generate_latents(
12
- prompt,
13
- n_images=n_images,
14
- cfg_weight=cfg,
15
- num_steps=steps,
16
- negative_text=negative_prompt,
17
- )
18
- for x_t in latents:
19
- mx.simplify(x_t)
20
- mx.simplify(x_t)
21
- mx.eval(x_t)
22
 
23
- # Decode them into images
24
- decoded = []
25
- for i in range(0, n_images):
26
- decoded_img = sd.decode(x_t[i:i+1])
27
- mx.eval(decoded_img)
28
- decoded.append(decoded_img)
29
-
30
- # Arrange them on a grid
31
- x = mx.concatenate(decoded, axis=0)
32
- x = mx.pad(x, [(0, 0), (8, 8), (8, 8), (0, 0)])
33
- B, H, W, C = x.shape
34
- x = x.reshape(n_rows, B // n_rows, H, W, C).transpose(0, 2, 1, 3, 4)
35
- x = x.reshape(n_rows * H, B // n_rows * W, C)
36
- x = (x * 255).astype(mx.uint8)
37
-
38
- # Convert to PIL Image
39
- return Image.fromarray(x.__array__())
40
-
41
- iface = gr.Interface(
42
- fn=generate_images,
43
- inputs=[
44
- gr.Textbox(label="Prompt"),
45
- gr.Slider(minimum=1, maximum=10, step=1, value=4, label="Number of Images"),
46
- gr.Slider(minimum=20, maximum=100, step=1, value=50, label="Steps"),
47
- gr.Slider(minimum=0.0, maximum=10.0, step=0.1, value=7.5, label="CFG Weight"),
48
- gr.Textbox(default="", label="Negative Prompt"),
49
- gr.Slider(minimum=1, maximum=10, step=1, value=1, label="Number of Rows")
50
- ],
51
- outputs="image",
52
- title="Stable Diffusion Image Generator",
53
- description="Generate images from a textual prompt using Stable Diffusion"
54
  )
55
 
56
- iface.launch()
 
 
1
+ from langchain.tools import ElevenLabsText2SpeechTool
2
  import gradio as gr
 
 
 
 
3
 
4
+ tts = ElevenLabsText2SpeechTool()
 
5
 
6
+ def generate_speech(text_to_speak):
7
+ speech_file = tts.run(text_to_speak)
8
+ return speech_file
 
 
 
 
 
 
 
 
 
9
 
10
+ demo = gr.Interface(
11
+ fn=generate_speech,
12
+ inputs=gr.Textbox(label="Enter Text"),
13
+ outputs=gr.Audio(label="Generated Speech"),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
  )
15
 
16
+ if __name__ == "__main__":
17
+ demo.launch()