File size: 33,428 Bytes
37728ff
b8cd41a
7da897b
55c625e
5bf35d7
2224fa7
b8cd41a
 
f3fcd73
be98e5a
 
37728ff
 
b8cd41a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7da897b
b4eaf9f
 
 
 
b8cd41a
2224fa7
 
 
b8cd41a
 
 
 
 
2224fa7
 
 
b4eaf9f
be98e5a
 
 
 
37728ff
 
b8cd41a
 
37728ff
 
 
 
 
 
 
 
 
b8cd41a
 
 
f3fcd73
b8cd41a
 
 
 
 
 
 
dc3eae1
37728ff
b4eaf9f
3cf97c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc3eae1
3e06386
b4eaf9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e06386
 
8d22170
 
3e06386
 
 
 
b4eaf9f
 
 
 
3e06386
b4eaf9f
 
3e06386
b4eaf9f
 
3e06386
 
 
 
 
 
b4eaf9f
3e06386
b4eaf9f
 
 
3e06386
b4eaf9f
 
3e06386
 
 
b4eaf9f
3e06386
b4eaf9f
 
 
 
 
 
3e06386
b4eaf9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e06386
b4eaf9f
 
 
 
 
3e06386
b4eaf9f
 
 
0e8c3eb
 
b4eaf9f
 
 
 
 
f3fcd73
b4eaf9f
 
92bf753
b4eaf9f
 
 
37728ff
b4eaf9f
 
b8cd41a
b4eaf9f
 
b8cd41a
b4eaf9f
b8cd41a
e8cb8c1
37728ff
 
 
 
 
 
b4eaf9f
37728ff
 
b4eaf9f
37728ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8cd41a
 
 
37728ff
 
 
 
b4eaf9f
b8cd41a
 
 
e8cb8c1
a90d6e8
b8cd41a
 
 
 
 
 
 
 
2224fa7
b4eaf9f
 
 
2224fa7
a90d6e8
2224fa7
 
 
b8cd41a
2224fa7
 
 
 
b8cd41a
2224fa7
b8cd41a
2224fa7
 
b8cd41a
 
 
 
 
 
 
 
 
b4eaf9f
a90d6e8
b8cd41a
 
 
b4eaf9f
b8cd41a
947fd31
b8cd41a
b4eaf9f
2224fa7
b8cd41a
 
 
 
 
 
 
 
 
 
 
 
 
 
b4eaf9f
b8cd41a
37728ff
b8cd41a
 
 
 
 
37728ff
b8cd41a
 
 
 
 
 
 
 
 
 
 
 
 
b4eaf9f
b8cd41a
 
37728ff
b8cd41a
 
b4eaf9f
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
# 1. Libraries
from datasets import load_dataset
import gradio as gr
import torch
from transformers import AutoModelForSeq2SeqLM, NllbTokenizer
import pandas as pd
import random
import string
import re
from datetime import datetime
import pytz

# 2. Constants
# Translation
MODEL_TRANSLATE_PATH = 'TSjB/NLLB-201-600M-QM-V2'

# Dictionary
DATA_DICTIONARY_PATH = "TSjB/dictionary_krc_rus"
OUTPUT_ROW_BY_EVERY_DICTIONARY = 15

# TTS
LANGUAGE_KRC_TTS = 'cyrillic'
MODEL_ID_KRC_TTS = 'v4_cyrillic'

SAMPLE_RATE_TTS = 48000
SPEAKER_KRC_TTS = 'b_krc'

REPO_TTS_PATH = "snakers4/silero-models"
MODEL_TTS_PATH = "silero_tts"

# LANGUAGE = pd.DataFrame({"language": ["Къарачай-Малкъар тил", "Русский язык"], "token": ["krc_Cyrl", "rus_Cyrl"]})
LANGUAGE = {"Къарачай-Малкъар тил": "krc_Cyrl", "Русский язык": "rus_Cyrl"}
# DIALECT = pd.DataFrame({"dialect": ["дж\ч", "ж\ч", "з\ц"], "short_name": ["qrc", "hlm", "mqr"]})
DIALECT = {"дж\ч": "qrc", "ж\ч": "hlm", "з\ц": "mqr"}
TYPE = pd.DataFrame({"krc": ["Кёчюрюўчю", "Сёзлюк", "Сёлешиўчю"], "rus": ["Переводчик", "Словарь", "Озвучка"], "eng": ["Translator", "Dictionary", "Voice"], "tur": ["Çevirmen", "Sözlük", "Seslendirme"], "short_name": ["translator", "dictionary", "tts"]})

SYSTEM_LANG = "rus"
NAMES = pd.DataFrame({
   "id": ["title", "type", "from", "to", "your_sent", "your_sent_tts", "transl_sent", "dialect", "translate", "annotation", "word_absence", "sound"],
   "krc": ["# Къарачай-Малкъар сёзлюк бла кёчюрюўчю", "Тюрлюсю", "тилден", "тилге", "Мында джаз...", "Къарачай-Малкъарча мында джаз...", "Кёчюрюлгени", "Къарачай-Малкъарны диалекти", "Кёчюр","Къарачай-малкъар, орус тиллени арасында биринчи кёчюрюўчюдю. Сёзлюк да эмда Къарачай-Малкъар сёлешиўчю ичине салыннганды.\n\n[Богдан Теўуналаны](https://t.me/bogdan_tewunalany), [Али Берберлени](https://t.me/ali_berberov) къурагъандыла\n\nСоинвестированиени эмда спонсорлукъ болушлукъну юсюнден [Али Берберовгъа](https://t.me/ali_berberov) соругъуз", "Сорулгъаны сёзлюкде табылмагъанды.", "Сёлешдир"],
   "rus": ["# Карачаево-балкарский словарь и переводчик", "Тип", "из", "на", "Напишите здесь...", "Напиши здесь по-карачаево-балкарски...", "Переведённый текст", "Карачаево-балкарский диалект", "Перевести","Первый переводчик между карачаево-балкарским и русским языками. Встроен словарь для отдельных слов или коротких фраз и озвучка карачаево-балкарского текста.\n\nРазработчики: [Богдан Теунаев](https://t.me/bogdan_tewunalany), [Али Берберов](https://t.me/ali_berberov)\n\nПо вопросам соинвестирования и спонсорской поддержки обращайтесь к [Али Берберову](https://t.me/ali_berberov)", "Запрашиваемое в словаре не найдено.", "Озвучить"],
   "tur": ["# Karaçayca-Balkarca sözlük ve çevirmen", "Tür", "dilden", "dile", "Buraya yaz...", "Buraya Karaçay-Balkarca yaz...", "Çevrilmiş metin burada", "Karaçay-Malkar lehçesi", "Tercüme edin", "Karaçay-Balkarca ve Rusça dilleri arasındaki ilk çevirmen. Tek tek kelimeler veya kısa ifadeler için bir sözlük ve Karaçay-Balkar metninin seslendirmesi de yerleşiktir.\n\nGeliştiriciler: [Bogdan Tewunalanı](https://t.me/bogdan_tewunalany), [Ali Berberov](https://t.me/ali_berberov)\n\nOrtak yatırım ve sponsorluk ile ilgili sorularınız için [Ali Berberov](https://t.me/ali_berberov) ile iletişime geçin", "Sorge sözlükte bulunmuyor.", "Ses vermek"],
   "eng": ["# Qarachay-Malqar dictionary and translator", "Type", "from", "to", "Write here...", "Write here in Karachay-Balkar...", "Translated text is here", "Qarachay-Malqar dialect", "Translate", "The first translator between Qarachay-Malqar and Russian languages. There is also a built-in dictionary for individual words or short phrases and voice acting of the Karachay-Balkar text.\n\nDevelopers: [Bogdan Tewunalany](https://t.me/bogdan_tewunalany), [Ali Berberov](https://t.me/ali_berberov)\n\nFor co-investment and sponsorship, please contact [Ali Berberov] (https://t.me/ali_berberov)", "The requested was not found in the dictionary.", "Voice over"]
})


DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'

device = torch.device(DEVICE)

TZ = pytz.timezone('Europe/Moscow')

# 3. Upload
# Dictionary
dictionary = load_dataset(DATA_DICTIONARY_PATH)
dictionary = pd.DataFrame(dictionary['train'])

dictionary["soz"] = dictionary.soz.str.upper()
dictionary["soz_l"] = dictionary.soz.str.lower()
dictionary["belgi_l"] = dictionary.belgi.str.lower()

dictionary_qm = dictionary[dictionary.til == "krc"]
dictionary_ru = dictionary[dictionary.til == "rus"]

# Tranlation
tokenizer = NllbTokenizer.from_pretrained(MODEL_TRANSLATE_PATH)
model_translate = AutoModelForSeq2SeqLM.from_pretrained(MODEL_TRANSLATE_PATH)
model_translate.eval() # turn off training mode
# TTS
model_tts, _  = torch.hub.load(repo_or_dir = REPO_TTS_PATH,
                                     model = MODEL_TTS_PATH,
                                     language = LANGUAGE_KRC_TTS,
                                     speaker = MODEL_ID_KRC_TTS)
                                     
model_tts.to(device)

# 4. Fix tokenizer
# def fixTokenizer(tokenizer, new_lang='krc_Cyrl'):
#    """
#    Add a new language token to the tokenizer vocabulary
#    (this should be done each time after its initialization)
#    """
#    old_len = len(tokenizer) - int(new_lang in tokenizer.added_tokens_encoder)
#    tokenizer.lang_code_to_id[new_lang] = old_len-1
#    tokenizer.id_to_lang_code[old_len-1] = new_lang
#    # always move "mask" to the last position
#    tokenizer.fairseq_tokens_to_ids["<mask>"] = len(tokenizer.sp_model) + len(tokenizer.lang_code_to_id) + tokenizer.fairseq_offset
#
#    tokenizer.fairseq_tokens_to_ids.update(tokenizer.lang_code_to_id)
#    tokenizer.fairseq_ids_to_tokens = {v: k for k, v in tokenizer.fairseq_tokens_to_ids.items()}
#    if new_lang not in tokenizer._additional_special_tokens:
#        tokenizer._additional_special_tokens.append(new_lang)
#    # clear the added token encoder; otherwise a new token may end up there by mistake
#    tokenizer.added_tokens_encoder = {}
#    tokenizer.added_tokens_decoder = {}

#fixTokenizer(tokenizer)


class Translator:
  """
    Class for translator NLLB-200.

    Параметры:
    - model:     Модель
    - tokenizer: Токенизатор

    Функция translate алады:
    - text (str):             Текст
    - src_lang (str):         Тебреген тил
    - tgt_lang (str):         Тил таба
    - dialect (int): Диалект

    Чыгъарады:
    - translated (str): Кёчюрюлгени

    """
  def __init__(self, tokenizer, model) -> None:
    self.model = model
    self.tokenizer = tokenizer
  # Change letters
  def _fromModel(self, str: str, dialect: str = "qrc") -> str:
    if dialect == "qrc":
        str = str.replace("тюйюл", "тюл") 
        str = str.replace("Тюйюл", "Тюл") 
        str = str.replace("уку", "гылын qуш") 
        str = str.replace("Уку", "Гылын qуш") 
        str = str.replace("хораз", "гугурукку") 
        str = str.replace("Хораз", "Гугурукку") 
        str = str.replace("юзмез", "qум") 
        str = str.replace("Юзмез", "Qум") 
        str = str.replace("jиля", "jыла") 
        str = str.replace("Jиля", "Jыла") 
        str = str.replace("ярабий", "арабин") 
        str = str.replace("арабий", "арабин") 
        str = str.replace("Ярабий", "Арабин") 
        str = str.replace("Арабий", "Арабин") 
        str = str.replace("нтта", "нтда") 
        str = str.replace("ртте", "ртде") 
        str = str.replace("jамауат", "jамаgат") 
        str = str.replace("jамаwат", "jамаgат") 
        str = str.replace("Jамауат", "Jамаgат") 
        str = str.replace("Jамаwат", "Jамаgат") 
        str = str.replace("шуёх", "шох") 
        str = str.replace("Шуёх", "Шох") 
        str = str.replace("шёндю", "бусаgат") 
        str = str.replace("Шёндю", "Бусаgат") 
        str = str.replace("уgай", "оgай") 
        str = str.replace("Уgай", "Оgай") 
        # str = str.replace("терк", "тез") 
        str = str.replace("саnа", "сенnе") 
        str = str.replace("сеnе", "сенnе") 
        str = str.replace("Саnа", "Сенnе") 
        str = str.replace("Сеnе", "Сенnе") 
        str = str.replace("маnа", "менnе") 
        str = str.replace("меnе", "менnе") 
        str = str.replace("Маnа", "Менnе") 
        str = str.replace("Меnе", "Менnе") 
        str = str.replace("аяq jол", "jахтана") 
        str = str.replace("Аяq jол", "Jахтана") 
        str = str.replace("сыbат", "сыфат") 
        str = str.replace("Сыbат", "Сыфат") 
        str = str.replace("b", "б") 
        str = str.replace("q", "къ") 
        str = str.replace("Q", "Къ") 
        str = str.replace("g", "гъ") 
        str = str.replace("G", "Гъ") 
        str = str.replace("j", "дж") 
        str = str.replace("J", "Дж") 
        str = str.replace("w", "ў") 
        str = str.replace("W", "Ў") 
        str = str.replace("n", "нг") 
        str = str.replace("N", "Нг")
    elif dialect == "hlm":
        str = str.replace("тюл", "тюйюл") 
        str = str.replace("Тюл", "Тюйюл") 
        str = str.replace("гылын qуш", "уку") 
        str = str.replace("Гылын qуш", "Уку") 
        str = str.replace("гугурукку", "хораз") 
        str = str.replace("Гугурукку", "Хораз") 
        str = str.replace("qум", "юзмез") 
        str = str.replace("Qум", "Юзмез") 
        str = str.replace("jыла", "jиля") 
        str = str.replace("Jыла", "Jиля") 
        str = str.replace("арабин", "ярабий") 
        str = str.replace("арабий", "ярабий") 
        str = str.replace("Арабин", "Ярабий") 
        str = str.replace("Арабий", "Ярабий") 
        str = str.replace("нтда", "нтта") 
        str = str.replace("ртде", "ртте") 
        str = str.replace("jамаgат", "jамаwат") 
        str = str.replace("Jамаgат", "Jамаwат") 
        str = str.replace("шох", "шуёх") 
        str = str.replace("Шох", "Шуёх") 
        str = str.replace("бусаgат", "шёндю") 
        str = str.replace("Бусаgат", "Шёндю") 
        str = str.replace("оgай", "уgай") 
        str = str.replace("Оgай", "Уgай") 
        str = str.replace("тез", "терк") 
        str = str.replace("сенnе", "саnа") 
        str = str.replace("сеnе", "саnа") 
        str = str.replace("Сенnе", "Саnа") 
        str = str.replace("Сеnе", "Саnа") 
        str = str.replace("менnе", "маnа") 
        str = str.replace("меnе", "маnа") 
        str = str.replace("Менnе", "Маnа") 
        str = str.replace("Меnе", "Маnа") 
        str = str.replace("jахтана", "аяq jол") 
        str = str.replace("Jахтана", "аяq jол") 
        str = str.replace("хо", "хаw") 
        str = str.replace("Хо", "Хаw") 
        str = str.replace("сыbат", "сыфат") 
        str = str.replace("Сыbат", "Сыфат") 
        str = str.replace("b", "п") 
        str = str.replace("q", "къ") 
        str = str.replace("Q", "Къ") 
        str = str.replace("g", "гъ") 
        str = str.replace("G", "Гъ") 
        str = str.replace("j", "ж") 
        str = str.replace("J", "Ж") 
        str = str.replace("w", "ў") 
        str = str.replace("W", "Ў") 
        str = str.replace("n", "нг") 
        str = str.replace("N", "Нг")
    elif dialect == "mqr":
        str = str.replace("тюл", "тюйюл") 
        str = str.replace("Тюл", "Тюйюл") 
        str = str.replace("гылын qуш", "уку") 
        str = str.replace("Гылын qуш", "Уку") 
        str = str.replace("гугурукку", "хораз") 
        str = str.replace("Гугурукку", "Хораз") 
        str = str.replace("qум", "юзмез") 
        str = str.replace("Qум", "Юзмез") 
        str = str.replace("jыла", "jиля") 
        str = str.replace("Jыла", "Jиля") 
        str = str.replace("арабин", "ярабий") 
        str = str.replace("арабий", "ярабий") 
        str = str.replace("Арабин", "Ярабий") 
        str = str.replace("Арабий", "Ярабий") 
        str = str.replace("нтда", "нтта") 
        str = str.replace("ртде", "ртте") 
        str = str.replace("jамаgат", "жамаwат") 
        str = str.replace("Jамаgат", "Жамаwат") 
        str = str.replace("шох", "шуёх") 
        str = str.replace("Шох", "Шуёх") 
        str = str.replace("бусаgат", "шёндю") 
        str = str.replace("Бусаgат", "Шёндю") 
        str = str.replace("оgай", "уgай") 
        str = str.replace("Оgай", "Уgай") 
        str = str.replace("тез", "терк") 
        str = str.replace("сенnе", "саnа") 
        str = str.replace("сеnе", "саnа") 
        str = str.replace("Сенnе", "Саnа") 
        str = str.replace("Сеnе", "Саnа") 
        str = str.replace("менnе", "маnа") 
        str = str.replace("меnе", "маnа") 
        str = str.replace("Менnе", "Маnа") 
        str = str.replace("Меnе", "Маnа") 
        str = str.replace("jахтана", "аяq jол") 
        str = str.replace("Jахтана", "аяq jол") 
        str = str.replace("хо", "хаw") 
        str = str.replace("Хо", "Хаw") 
        str = str.replace("сыbат", "сыфат") 
        str = str.replace("Сыbат", "Сыфат") 
        str = str.replace("b", "п") 
        str = str.replace("q", "къ") 
        str = str.replace("Q", "Къ") 
        str = str.replace("g", "гъ") 
        str = str.replace("G", "Гъ") 
        str = str.replace("j", "з") 
        str = str.replace("J", "З") 
        str = str.replace("w", "ў") 
        str = str.replace("W", "Ў") 
        str = str.replace("n", "нг") 
        str = str.replace("N", "Нг") 
        str = str.replace("ч", "ц") 
        str = str.replace("Ч", "Ц") 
        str = str.replace("п", "ф") 
        str = str.replace("П", "Ф") 
        str = str.replace("къ|гъ", "х")
    return str
      
  def _toModel(self, str: str) -> str:
      str = str.replace("дж", "j") 
      str = str.replace("Дж", "J") 
      str = str.replace("ДЖ", "J") 
      str = str.replace("ж", "j") 
      str = str.replace("Ж", "J")
      str = str.replace("себеп", "себеb") 
      str = str.replace("себеб", "себеb") 
      str = str.replace("Себеп", "Себеb") 
      str = str.replace("Себеб", "Себеb") 
      str = str.replace("тюйюл", "тюл") 
      str = str.replace("Тюйюл", "Тюл") 
      str = str.replace("уку", "гылын qуш") 
      str = str.replace("Уку", "Гылын qуш") 
      str = str.replace("хораз", "гугурукку") 
      str = str.replace("Хораз", "Гугурукку") 
      str = str.replace("юзмез", "qум") 
      str = str.replace("Юзмез", "Qум") 
      str = str.replace("арап", "араb") 
      str = str.replace("араб", "араb") 
      str = str.replace("Арап", "Араb")
      str = str.replace("Араб", "Араb")
      str = str.replace("jиля", "jыла") 
      str = str.replace("jыла", "jыла") 
      str = str.replace("jыла", "jыла") 
      str = str.replace("Jиля", "Jыла") 
      str = str.replace("Jыла", "Jыла") 
      str = str.replace("Jыла", "Jыла") 
      str = str.replace("ярабий", "арабин") 
      str = str.replace("арабий", "арабин") 
      str = str.replace("Ярабий", "Арабин") 
      str = str.replace("Арабий", "Арабин") 
      str = str.replace("нтта", "нтда") 
      str = str.replace("ртте", "ртде") 
      str = str.replace("jамагъат", "jамаgат") 
      str = str.replace("jамауат", "jамаgат") 
      str = str.replace("jамагъат", "jамаgат")
      str = str.replace("jамауат", "jамаgат")
      str = str.replace("Jамагъат", "Jамаgат") 
      str = str.replace("Jамауат", "Jамаgат") 
      str = str.replace("Jамагъат", "Jамаgат") 
      str = str.replace("Jамаўат", "Jамаgат") 
      str = str.replace("шуёх", "шох") 
      str = str.replace("Шуёх", "Шох") 
      str = str.replace("шёндю", "бусаgат") 
      str = str.replace("бусагъат", "бусаgат") 
      str = str.replace("Шёндю", "Бусаgат") 
      str = str.replace("Бусагъат", "Бусаgат") 
      str = str.replace("угъай", "оgай")
      str = str.replace("огъай", "оgай")
      str = str.replace("Угъай", "Оgай") 
      str = str.replace("Огъай", "Оgай") 
      # str = str.replace("терк", "тез") 
      # str = str.replace("терк", "тез") 
      str = str.replace("санга", "сенnе") 
      str = str.replace("сенге", "сенnе") 
      str = str.replace("сеннге", "сенnе") 
      str = str.replace("Санга", "Сенnе") 
      str = str.replace("Сеннге", "Сенnе") 
      str = str.replace("Сенге", "Сенnе") 
      str = str.replace("манга", "менnе") 
      str = str.replace("меннге", "менnе") 
      str = str.replace("менге", "менnе") 
      str = str.replace("Манга", "Менnе") 
      str = str.replace("Меннге", "Менnе") 
      str = str.replace("Менге", "Менnе") 
      str = str.replace("аякъ jол", "jахтана") 
      str = str.replace("аякъ jол", "jахтана") 
      str = str.replace("jахтана", "jахтана") 
      str = str.replace("jахтана", "jахтана") 
      str = str.replace("Аякъ jол", "Jахтана") 
      str = str.replace("Аякъ jол", "Jахтана") 
      str = str.replace("Jахтана", "Jахтана") 
      str = str.replace("Jахтана", "Jахтана") 
      str = str.replace("къамж", "qамыzh") 
      str = str.replace("къамыж", "qамыzh") 
      str = str.replace("Къамж", "Qамыzh") 
      str = str.replace("Къамыж", "Qамыzh") 
      str = str.replace("къымыж", "qымыzh") 
      str = str.replace("къымыж", "qымыzh") 
      str = str.replace("Къымыж", "Qымыzh") 
      str = str.replace("Къымыж", "Qымыzh") 
      str = str.replace("хау", "хо") 
      str = str.replace("хаў", "хо") 
      str = str.replace("Хау", "Хо") 
      str = str.replace("Хаў", "Хо") 
      str = str.replace("уа", "wa") 
      str = str.replace("ўа", "wa") 
      str = str.replace("Уа", "Wa") 
      str = str.replace("Ўа", "Wa") 
      str = str.replace("п", "b") 
      str = str.replace("б", "b") 
      str = str.replace("къ", "q") 
      str = str.replace("Къ", "Q") 
      str = str.replace("КЪ", "Q") 
      str = str.replace("гъ", "g") 
      str = str.replace("Гъ", "G") 
      str = str.replace("ГЪ", "G") 
      str = str.replace("ц", "ч") 
      str = str.replace("Ц", "Ч") 
      str = str.replace("ф", "п") 
      str = str.replace("сыпат", "сыфат") 
      str = str.replace("Сыпат", "Сыфат") 
      str = str.replace("Ф", "П") 
      str = str.replace("(?<=[аыоуэеиёюя])у(?=[аыоуэеиёюя])|(?<=[аыоуэеиёюя])ў(?=[аыоуэеиёюя])|(?<=[АЫОУЭЕИЁЮЯ])у(?=[АЫОУЭЕИЁЮЯ])|(?<=[АЫОУЭЕИЁЮЯ])ў(?=[АЫОУЭЕИЁЮЯ])", "w")
      str = str.replace("(?<=[аыоуэеиёюя])у|(?<=[аыоуэеиёюя])ў|(?<=[АЫОУЭЕИЁЮЯ])у|(?<=[АЫОУЭЕИЁЮЯ])ў", "w")
      # str = str.replace("у(?=[аыоуэеиёюя])|ў(?=[аыоуэеиёюя])|у(?=[АЫОУЭЕИЁЮЯ])|ў(?=[АЫОУЭЕИЁЮЯ])", "w") 
      # str = str.replace("У(?=[аыоуэеиёюя])|Ў(?=[аыоуэеиёюя])|У(?=[АЫОУЭЕИЁЮЯ])|Ў(?=[АЫОУЭЕИЁЮЯ])", "W") 
      str = str.replace("zh", "ж") 
      str = str.replace("нг", "n") 
      str = str.replace("Нг", "  N")
      str = str.replace("НГ", "  N")
      return str

  # structure
  def _prepareTextAndStructure(self, text: str) -> tuple:  
    """
    The input text is divided into sentences, while maintaining the structure
    """

    # Разбиваем текст на предложения, сохраняя знаки препинания
    #   .+?[.!?।ฯ؟](?:\s|$): Захватывает предложения, которые заканчиваются
    # точкой, восклицательным или вопросительным знаком.

    # |.+?(?:\n|$): Добавляет поддержку для разрыва строки (\n) или конца текста ($),
    # если предложение не заканчивается знаком препинания.
    segments = re.findall(pattern=r".+?[.!?।ฯ؟](?:\s|$)|.*?(?:\n|$)", string=text)

    # Если последний элемент пустой, то его удаляем
    if not segments[-1]:
        segments = segments[:-1]

    # Склеиваем разорванные предложения
    merged_segments = []
    buffer = ""

    for i, segment in enumerate(segments):
        # Проверяем, заканчивается ли текущий сегмент на .!? или пуст
        if buffer:
            buffer += " " + segment
        else:
            buffer = segment

        # Если сегмент не заканчивается на .!? и следующий начинается с маленькой буквы
        if (  # noqa: R507
            not re.search(pattern=r"[.!?।ฯ؟](?:\s|$)", string=segment)  # noqa: ECE001
            and i + 1 < len(segments)
            and segments[i + 1].strip()
            and ((segments[i + 1].strip()[0].islower()) or (segments[i + 1].strip()[0] in ["'", '"']))
        ):
            continue  # Склеиваем с следующим сегментом
        else:
            merged_segments.append(buffer)
            buffer = ""

    # Удаляем пустые сегменты и сохраняем пробелы
    original_structure = []
    for segment in merged_segments:
        match = re.match(pattern=r"^(\s*)(.*?)(\s*)$", string=segment, flags=re.DOTALL)
        if match:
            original_structure.append((match.group(1), match.group(2), match.group(3)))

    # Токенизируем только текстовые части сегментов
    texts_to_translate = [seg[1] for seg in original_structure if seg[1].strip()]

    return texts_to_translate, original_structure

  def _recoverTranslatedToStructure(self, translated_texts: str, original_structure: list) -> str:
    """
    Translated sentences are embedded in the structure of the original text
    """
    # Восстанавливаем исходную структуру текста
    translated_segments = []
    translated_index = 0
    for seg in original_structure:
        if seg[1].strip():  # Если сегмент был переведён
            translated_segments.append(f"{seg[0]}{translated_texts[translated_index]}{seg[2]}")
            translated_index += 1
        else:  # Если сегмент был пустым, оставляем его как есть
            translated_segments.append(f"{seg[0]}{seg[1]}{seg[2]}")

    return "".join(translated_segments)


  # Translate function
  def _translate(self, text: list | str, src_lang: str = 'rus_Cyrl', tgt_lang: str = 'krc_Cyrl',
      a: int = 32, b: int = 3, max_input_length: int = 1024, num_beams: int = 3, **kwargs
  ) -> list:
      """Turn a text or a list of texts into a list of translations"""
      self.tokenizer.src_lang = src_lang
      self.tokenizer.tgt_lang = tgt_lang
      inputs = self.tokenizer(
          text, return_tensors='pt', padding=True, truncation=True,
          max_length=max_input_length
      )
      #print(f'Inputs: {inputs}')
      result = self.model.generate(
          **inputs.to(self.model.device),
          forced_bos_token_id=self.tokenizer.convert_tokens_to_ids(tgt_lang),
          max_new_tokens=int(a + b * inputs.input_ids.shape[1]),
          num_beams=num_beams, **kwargs
      )
      #print(f'Outputs: {result}')
      return self.tokenizer.batch_decode(result, skip_special_tokens=True)

  def translate(self, text: str, src_lang: str | None = None, tgt_lang: str | None = None, dialect: str | None = None) -> str:
    # print(src_lang)
    # print(trg_lang)
    # print(dialect)
    if dialect == "" or dialect is None:
      # dialect = DIALECT.dialect[0] # "дж\ч"
      dialect = list(DIALECT.keys())[0] # "дж\ч"
    if src_lang == "" or src_lang is None:
      # src_lang = LANGUAGE.language[1] # "Русский язык"
      src_lang = list(LANGUAGE.keys())[1] # "Русский язык"
    if tgt_lang == "" or tgt_lang is None:
      # tgt_lang = LANGUAGE.language[0] # "Къарачай-Малкъар тил"
      tgt_lang = list(LANGUAGE.keys())[0] # "Къарачай-Малкъар тил"
      
    # src_lang = "".join(LANGUAGE[LANGUAGE.language == src_lang].token.to_list())
    # tgt_lang = "".join(LANGUAGE[LANGUAGE.language == tgt_lang].token.to_list())
    # dialect = "".join(DIALECT[DIALECT.dialect == dialect].short_name.to_list())
    src_lang = LANGUAGE[src_lang]
    tgt_lang = LANGUAGE[tgt_lang]
    dialect = DIALECT[dialect]

    print(f'Input text: {text} - Time: {datetime.now(tz=TZ)}')
      
    text = text.strip()
      
    if src_lang == 'krc_Cyrl':
      text = self._toModel(text)

    # Разбиваем текст на предложения, сохраняя знаки препинания
    texts_to_translate, original_structure = self._prepareTextAndStructure(text=text)
    # text бош эсе
    if len(texts_to_translate) == 0:
      texts_to_translate = [""]

    #print(f'Split text: {texts_to_translate}')
      
    translated_texts = self._translate(text=texts_to_translate, src_lang = src_lang, tgt_lang = tgt_lang)


    
    translated = self._recoverTranslatedToStructure(
          translated_texts=translated_texts, original_structure=original_structure
      )
    #print(f'Translated text: {translated}')

    if tgt_lang == 'krc_Cyrl':
      translated = self._fromModel(str=translated, dialect = dialect)

    print(f'Translated text: {translated} - Time: {datetime.now(tz=TZ)}')
      
    return translated
  
# Dictionary function
def dictionaryDisp(text, src_lang):
  
  if src_lang == "" or src_lang is None:
    src_lang = list(LANGUAGE.keys())[1] # "Русский язык"
      
  src_lang = LANGUAGE[src_lang]

  text = text.strip()
  str_l = text.lower()
  filter_ = r"\W+" + str_l + r"|^" + str_l
  
  df_from_to = pd.DataFrame() 
  df_to_from = pd.DataFrame()
  
  if src_lang == 'krc_Cyrl':
    df_from_to = dictionary_qm.copy()
    df_to_from = dictionary_ru.copy()
  elif src_lang == 'rus_Cyrl':
    df_from_to = dictionary_ru.copy()
    df_to_from = dictionary_qm.copy()
    
  sozluk_1 = df_from_to[df_from_to.soz_l.str.startswith(str_l)]
  # Select rows based on the sequence and output
  sozluk_1 = sozluk_1.iloc[:OUTPUT_ROW_BY_EVERY_DICTIONARY]
  
  sozluk_2 = df_from_to[df_from_to.belgi_l.str.contains(filter_, regex=True)]
  sozluk_2 = sozluk_2.iloc[:OUTPUT_ROW_BY_EVERY_DICTIONARY]
  
  sozluk_3 = df_to_from[df_to_from.belgi_l.str.contains(filter_, regex=True)]
  sozluk_3 = sozluk_3.iloc[:OUTPUT_ROW_BY_EVERY_DICTIONARY]
  
  # Concatenate the DataFrames and drop duplicates
  sozluk = pd.concat([sozluk_1, sozluk_2, sozluk_3], ignore_index=True).drop_duplicates()[["soz", "belgi"]]
  sozluk = [x.soz + " ----- " + x.belgi + "\n\n----------\n\n" for x in sozluk.itertuples()]
  sozluk = "".join(sozluk)
  
  if(len(sozluk) == 0):
      sozluk = NAMES[NAMES.id == "word_absence"][SYSTEM_LANG].values[0]
      
  return sozluk
  # len(sozluk)
  
  
# Voice function 
def tts(text):
    file_voice = ''.join(random.choices(string.ascii_letters, k=8))
    file_voice = f'{file_voice}.wav'
    text = text.strip()
    
    model_tts.save_wav(
      audio_path = file_voice,
      text = text,
      speaker=SPEAKER_KRC_TTS,
      sample_rate=SAMPLE_RATE_TTS
        )

    return file_voice

# 5. Definition ui
translator = Translator(tokenizer=tokenizer, model=model_translate)

_title = "".join(NAMES[NAMES.id == "title"][SYSTEM_LANG].to_list())
_type = "".join(NAMES[NAMES.id == "type"][SYSTEM_LANG].to_list())
_from = "".join(NAMES[NAMES.id == "from"][SYSTEM_LANG].to_list())
_to = "".join(NAMES[NAMES.id == "to"][SYSTEM_LANG].to_list())
_your_sent = "".join(NAMES[NAMES.id == "your_sent"][SYSTEM_LANG].to_list())
_your_sent_tts = "".join(NAMES[NAMES.id == "your_sent_tts"][SYSTEM_LANG].to_list())
_transl_sent = "".join(NAMES[NAMES.id == "transl_sent"][SYSTEM_LANG].to_list())
_dialect = "".join(NAMES[NAMES.id == "dialect"][SYSTEM_LANG].to_list())
_translate = "".join(NAMES[NAMES.id == "translate"][SYSTEM_LANG].to_list())
_annotation = "".join(NAMES[NAMES.id == "annotation"][SYSTEM_LANG].to_list())
_sound = "".join(NAMES[NAMES.id == "sound"][SYSTEM_LANG].to_list())
 
    
with gr.Blocks() as demo:
    gr.Markdown(_title)
    
    # Translation
    with gr.Tab(TYPE[SYSTEM_LANG][0]):
      with gr.Row():
        with gr.Column():
          with gr.Row():
            # choice_type = gr.Dropdown(
            #   choices = TYPE[SYSTEM_LANG].to_list(), label=_type, value = TYPE[SYSTEM_LANG][0])
            translate_lang_input = gr.Dropdown(
              choices = list(LANGUAGE.keys()), label=_from, value = list(LANGUAGE.keys())[1])
              
        with gr.Column():
          with gr.Row():
            translate_lang_output = gr.Dropdown(
              choices = list(LANGUAGE.keys()), label=_to, value = list(LANGUAGE.keys())[0])

            dialect = gr.Dropdown(
              # choices = DIALECT.dialect.to_list(), label=_dialect, value = "дж\ч")
              choices = list(DIALECT.keys()), label=_dialect, value = list(DIALECT.keys())[0])

      with gr.Row():
        with gr.Column():
          translate_text_input = gr.Textbox(lines=15, placeholder=_your_sent, label = "", show_copy_button=True)
        with gr.Column():
          translate_text_output = gr.Textbox(lines=15, placeholder=_transl_sent, label = "", autoscroll=False, show_copy_button=True)

      translate_button = gr.Button(_translate, variant = 'primary')

    # Dictionary
    with gr.Tab(TYPE[SYSTEM_LANG][1]):
      with gr.Row():
        with gr.Column():
          with gr.Row():
            dict_lang_input = gr.Dropdown(
              choices = list(LANGUAGE.keys()), label=_from, value = list(LANGUAGE.keys())[1])
              

      with gr.Row():
        with gr.Column():
          dict_text_input = gr.Textbox(lines=15, placeholder=_your_sent, label = "", show_copy_button=True)
        with gr.Column():
          dict_text_output = gr.Textbox(lines=15, placeholder=_transl_sent, label = "", autoscroll=False, show_copy_button=True)

      dict_button = gr.Button(_translate, variant = 'primary')
      
    # TTS
    with gr.Tab(TYPE[SYSTEM_LANG][2]):
      with gr.Row():
        with gr.Column():
          tts_text_input = gr.Textbox(lines=3, placeholder=_your_sent_tts, label = "", show_copy_button=True)
        with gr.Column():
          tts_text_output = gr.Audio(label = "", type = 'filepath')

      tts_button = gr.Button(_sound, variant = 'primary')


    translate_button.click(translator.translate, inputs=[translate_text_input, translate_lang_input, translate_lang_output, dialect], outputs=[translate_text_output]) # text, from, to, dialect
    dict_button.click(dictionaryDisp, inputs=[dict_text_input, dict_lang_input], outputs=[dict_text_output]) # text, from
    tts_button.click(tts, inputs=[tts_text_input], outputs=[tts_text_output]) # text

    gr.Markdown(_annotation)

# 6. Launch
demo.launch()
# demo.launch(inbrowser=True)