File size: 17,646 Bytes
5259aa6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5582677
5259aa6
 
 
 
 
 
 
 
 
5582677
 
 
 
 
 
 
5259aa6
5582677
 
 
5259aa6
 
5582677
 
 
 
5259aa6
 
 
 
5582677
 
 
 
 
 
 
 
 
 
 
 
 
5259aa6
 
 
5582677
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5259aa6
5582677
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5259aa6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5582677
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5259aa6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
"""
Security utilities for TTS Arena to prevent vote manipulation and botting.
"""

from datetime import datetime, timedelta
from models import db, Vote, User
from sqlalchemy import func, and_, or_
import logging

logger = logging.getLogger(__name__)


def detect_suspicious_voting_patterns(user_id, hours_back=24, max_votes_per_hour=30):
    """
    Detect if a user has suspicious voting patterns.
    Updated to allow rapid voting for reasonable periods (30 votes/hour = 1 vote every 2 minutes)
    Returns (is_suspicious, reason, vote_count)
    """
    if not user_id:
        return False, None, 0
    
    # Check voting frequency over 24 hours
    time_threshold = datetime.utcnow() - timedelta(hours=hours_back)
    recent_votes = Vote.query.filter(
        and_(
            Vote.user_id == user_id,
            Vote.vote_date >= time_threshold
        )
    ).count()
    
    # Allow up to 30 votes per hour (720 votes in 24 hours)
    # This allows rapid voting for several hours but catches extended botting
    max_votes_24h = max_votes_per_hour * hours_back
    
    if recent_votes > max_votes_24h:
        return True, f"Too many votes: {recent_votes} in {hours_back} hours (max: {max_votes_24h})", recent_votes
    
    # Additional check: if someone votes more than 100 times in 3 hours, that's suspicious
    # (100 votes in 3 hours = 1 vote every 1.8 minutes, which is very sustained)
    if hours_back >= 3:
        three_hour_threshold = datetime.utcnow() - timedelta(hours=3)
        votes_3h = Vote.query.filter(
            and_(
                Vote.user_id == user_id,
                Vote.vote_date >= three_hour_threshold
            )
        ).count()
        
        if votes_3h > 100:
            return True, f"Excessive voting in short period: {votes_3h} votes in 3 hours", recent_votes
    
    return False, None, recent_votes


def detect_model_bias(user_id, model_id, min_votes=5, bias_threshold=0.8):
    """
    Detect if a user consistently votes for a specific model.
    Returns (is_biased, bias_ratio, total_votes_for_model, total_votes)
    """
    if not user_id:
        return False, 0, 0, 0
    
    # Get all votes by this user
    total_votes = Vote.query.filter_by(user_id=user_id).count()
    
    if total_votes < min_votes:
        return False, 0, 0, total_votes
    
    # Get votes where this user chose the specific model
    votes_for_model = Vote.query.filter(
        and_(
            Vote.user_id == user_id,
            Vote.model_chosen == model_id
        )
    ).count()
    
    bias_ratio = votes_for_model / total_votes if total_votes > 0 else 0
    
    is_biased = bias_ratio >= bias_threshold and total_votes >= min_votes
    
    return is_biased, bias_ratio, votes_for_model, total_votes


def detect_coordinated_voting(model_id, hours_back=6, min_users=3, vote_threshold=10):
    """
    Detect coordinated voting campaigns for a specific model.
    Returns (is_coordinated, user_count, vote_count, suspicious_users)
    """
    time_threshold = datetime.utcnow() - timedelta(hours=hours_back)
    
    # Get recent votes for this model
    recent_votes = db.session.query(Vote.user_id, Vote.vote_date).filter(
        and_(
            Vote.model_chosen == model_id,
            Vote.vote_date >= time_threshold
        )
    ).all()
    
    if len(recent_votes) < vote_threshold:
        return False, 0, len(recent_votes), []
    
    # Count unique users and analyze patterns
    user_vote_data = {}
    for vote in recent_votes:
        if vote.user_id:
            if vote.user_id not in user_vote_data:
                user_vote_data[vote.user_id] = []
            user_vote_data[vote.user_id].append(vote.vote_date)
    
    user_count = len(user_vote_data)
    
    # Enhanced detection logic
    if user_count >= min_users and len(recent_votes) >= vote_threshold:
        suspicious_users = []
        high_suspicion_users = []
        
        for user_id, vote_dates in user_vote_data.items():
            user_votes_for_model = len(vote_dates)
            
            if user_votes_for_model > 1:  # Multiple votes for same model in short time
                user = User.query.get(user_id)
                if user:
                    # Calculate suspicion level
                    account_age_days = (datetime.utcnow() - user.join_date).days if user.join_date else 0
                    vote_frequency = user_votes_for_model / hours_back  # votes per hour
                    
                    # Determine suspicion level
                    suspicion_level = "low"
                    if account_age_days < 30 or vote_frequency > 3:
                        suspicion_level = "high"
                        high_suspicion_users.append(user_id)
                    elif account_age_days < 90 or vote_frequency > 1:
                        suspicion_level = "medium"
                    
                    user_data = {
                        'user_id': user_id,
                        'username': user.username,
                        'votes_for_model': user_votes_for_model,
                        'account_age_days': account_age_days,
                        'suspicion_level': suspicion_level,
                        'first_vote_at': min(vote_dates),
                        'last_vote_at': max(vote_dates)
                    }
                    suspicious_users.append(user_data)
        
        # Calculate confidence score
        confidence_factors = []
        
        # Factor 1: Ratio of high suspicion users
        if suspicious_users:
            high_suspicion_ratio = len(high_suspicion_users) / len(suspicious_users)
            confidence_factors.append(min(high_suspicion_ratio * 0.4, 0.4))
        
        # Factor 2: Vote concentration (more votes in shorter time = higher confidence)
        vote_concentration = min(len(recent_votes) / (hours_back * user_count), 1.0)
        confidence_factors.append(vote_concentration * 0.3)
        
        # Factor 3: New account participation
        new_account_ratio = sum(1 for u in suspicious_users if u['account_age_days'] < 30) / len(suspicious_users) if suspicious_users else 0
        confidence_factors.append(new_account_ratio * 0.3)
        
        confidence_score = sum(confidence_factors)
        
        # Only consider it coordinated if confidence is above threshold
        is_coordinated = confidence_score >= 0.6
        
        if is_coordinated:
            # Log the campaign automatically
            try:
                from models import log_coordinated_campaign, Model
                model = Model.query.get(model_id)
                model_type = model.model_type if model else "unknown"
                
                participants_data = [{
                    'user_id': u['user_id'],
                    'votes_in_campaign': u['votes_for_model'],
                    'first_vote_at': u['first_vote_at'],
                    'last_vote_at': u['last_vote_at'],
                    'suspicion_level': u['suspicion_level']
                } for u in suspicious_users]
                
                campaign = log_coordinated_campaign(
                    model_id=model_id,
                    model_type=model_type,
                    vote_count=len(recent_votes),
                    user_count=user_count,
                    time_window_hours=hours_back,
                    confidence_score=confidence_score,
                    participants_data=participants_data
                )
                
                # Automatically timeout high suspicion users
                from models import create_user_timeout
                timeout_count = 0
                for user_id in high_suspicion_users:
                    try:
                        create_user_timeout(
                            user_id=user_id,
                            reason=f"Automatic timeout for participation in coordinated voting campaign (Campaign ID: {campaign.id})",
                            timeout_type="coordinated_voting",
                            duration_days=30,
                            related_campaign_id=campaign.id
                        )
                        timeout_count += 1
                    except Exception as e:
                        logger.error(f"Error creating timeout for user {user_id}: {str(e)}")
                
                logger.warning(f"Coordinated voting campaign detected and logged (ID: {campaign.id}). {timeout_count} users timed out.")
                
            except Exception as e:
                logger.error(f"Error logging coordinated campaign: {str(e)}")
        
        return is_coordinated, user_count, len(recent_votes), suspicious_users
    
    return False, user_count, len(recent_votes), []


def detect_rapid_voting(user_id, min_interval_seconds=3):
    """
    Detect if a user is voting too rapidly (potential bot behavior).
    This allows rapid voting (3+ seconds) for reasonable periods, but flags
    extended periods of very rapid voting that indicate bot behavior.
    Returns (is_rapid, intervals, avg_interval)
    """
    if not user_id:
        return False, [], 0
    
    # Get more recent votes to better analyze patterns (last 50 instead of 10)
    recent_votes = Vote.query.filter_by(user_id=user_id).order_by(
        Vote.vote_date.desc()
    ).limit(50).all()
    
    if len(recent_votes) < 50:  # Need at least 50 votes to detect patterns
        return False, [], 0
    
    # Calculate intervals between votes
    intervals = []
    for i in range(len(recent_votes) - 1):
        interval = (recent_votes[i].vote_date - recent_votes[i + 1].vote_date).total_seconds()
        intervals.append(interval)
    
    avg_interval = sum(intervals) / len(intervals) if intervals else 0
    
    # More sophisticated bot detection:
    # 1. Count votes with intervals < 3 seconds (very rapid)
    very_rapid_votes = sum(1 for interval in intervals if interval < 3)
    
    # 2. Count votes with intervals < 1 second (extremely rapid - likely bot)
    extremely_rapid_votes = sum(1 for interval in intervals if interval < 1)
    
    # 3. Check for sustained rapid voting patterns
    # Look for sequences of 10+ votes all under 5 seconds
    sustained_rapid_sequences = 0
    current_sequence = 0
    for interval in intervals:
        if interval < 5:
            current_sequence += 1
        else:
            if current_sequence >= 10:  # 10+ votes in a row under 5 seconds
                sustained_rapid_sequences += 1
            current_sequence = 0
    
    # Final check for remaining sequence
    if current_sequence >= 10:
        sustained_rapid_sequences += 1
    
    # Flag as rapid/bot if:
    # - More than 20% of votes are extremely rapid (< 1 second) OR
    # - More than 60% of votes are very rapid (< 3 seconds) AND there are sustained sequences OR
    # - There are multiple sustained rapid sequences (10+ votes under 5 seconds each)
    total_intervals = len(intervals)
    extremely_rapid_ratio = extremely_rapid_votes / total_intervals if total_intervals > 0 else 0
    very_rapid_ratio = very_rapid_votes / total_intervals if total_intervals > 0 else 0
    
    is_rapid = (
        extremely_rapid_ratio > 0.2 or  # > 20% extremely rapid
        (very_rapid_ratio > 0.6 and sustained_rapid_sequences > 0) or  # > 60% very rapid + sustained
        sustained_rapid_sequences >= 2  # Multiple sustained rapid sequences
    )
    
    return is_rapid, intervals, avg_interval


def check_user_security_score(user_id):
    """
    Calculate a security score for a user based on various factors.
    Returns (score, factors) where score is 0-100 (higher = more trustworthy)
    """
    if not user_id:
        return 0, {"error": "No user ID provided"}
    
    user = User.query.get(user_id)
    if not user:
        return 0, {"error": "User not found"}
    
    factors = {}
    score = 100  # Start with perfect score and deduct points
    
    # Account age factor
    if user.join_date:
        account_age_days = (datetime.utcnow() - user.join_date).days
        factors['account_age_days'] = account_age_days
        if account_age_days < 45:
            score -= 30
        elif account_age_days < 90:
            score -= 15
        elif account_age_days < 180:
            score -= 5
    else:
        score -= 20
        factors['account_age_days'] = None
    
    # HF account age factor
    if user.hf_account_created:
        hf_age_days = (datetime.utcnow() - user.hf_account_created).days
        factors['hf_account_age_days'] = hf_age_days
        if hf_age_days < 30:
            score -= 25  # This should be caught by auth, but double-check
        elif hf_age_days < 90:
            score -= 10
    else:
        score -= 15
        factors['hf_account_age_days'] = None
    
    # Voting pattern analysis
    is_suspicious, reason, vote_count = detect_suspicious_voting_patterns(user_id)
    factors['suspicious_voting'] = is_suspicious
    factors['recent_vote_count'] = vote_count
    if is_suspicious:
        score -= 25
        factors['suspicious_reason'] = reason
    
    # Rapid voting check
    is_rapid, intervals, avg_interval = detect_rapid_voting(user_id)
    factors['rapid_voting'] = is_rapid
    factors['avg_vote_interval'] = avg_interval
    if is_rapid:
        score -= 20
    
    # Total vote count (very new users with many votes are suspicious)
    total_votes = Vote.query.filter_by(user_id=user_id).count()
    factors['total_votes'] = total_votes
    
    if account_age_days and account_age_days < 7 and total_votes > 20:
        score -= 15  # New account with many votes
    
    # Model bias detection - check for extreme bias toward any single model
    if total_votes >= 5:  # Only check if user has enough votes
        max_bias_ratio = 0
        most_biased_model = None
        
        # Get all models this user has voted for
        user_votes = Vote.query.filter_by(user_id=user_id).all()
        model_stats = {}
        
        for vote in user_votes:
            chosen_id = vote.model_chosen
            rejected_id = vote.model_rejected
            
            # Track appearances and choices
            if chosen_id not in model_stats:
                model_stats[chosen_id] = {'chosen': 0, 'appeared': 0}
            if rejected_id not in model_stats:
                model_stats[rejected_id] = {'chosen': 0, 'appeared': 0}
            
            model_stats[chosen_id]['chosen'] += 1
            model_stats[chosen_id]['appeared'] += 1
            model_stats[rejected_id]['appeared'] += 1
        
        # Find the highest bias ratio
        for model_id, stats in model_stats.items():
            if stats['appeared'] >= 5:  # Only consider models with enough appearances
                bias_ratio = stats['chosen'] / stats['appeared']
                if bias_ratio > max_bias_ratio:
                    max_bias_ratio = bias_ratio
                    most_biased_model = model_id
        
        factors['max_bias_ratio'] = max_bias_ratio
        factors['most_biased_model_id'] = most_biased_model
        
        # Deduct points based on bias level
        if max_bias_ratio >= 0.95:  # 95%+ bias
            score -= 30
            factors['bias_penalty'] = 'Extreme bias (95%+)'
        elif max_bias_ratio >= 0.9:  # 90%+ bias
            score -= 20
            factors['bias_penalty'] = 'Very high bias (90%+)'
        elif max_bias_ratio >= 0.8:  # 80%+ bias
            score -= 10
            factors['bias_penalty'] = 'High bias (80%+)'
        else:
            factors['bias_penalty'] = None
    else:
        factors['max_bias_ratio'] = 0
        factors['bias_penalty'] = None
    
    # Ensure score doesn't go below 0
    score = max(0, score)
    factors['final_score'] = score
    
    return score, factors


def is_vote_allowed(user_id, ip_address=None):
    """
    Check if a vote should be allowed based on security factors.
    Returns (allowed, reason, security_score)
    """
    if not user_id:
        return False, "User not authenticated", 0
    
    # Check if user is currently timed out
    try:
        from models import check_user_timeout
        is_timed_out, timeout = check_user_timeout(user_id)
        if is_timed_out:
            remaining_time = timeout.expires_at - datetime.utcnow()
            days_remaining = remaining_time.days
            hours_remaining = remaining_time.seconds // 3600
            
            if days_remaining > 0:
                time_str = f"{days_remaining} day(s)"
            else:
                time_str = f"{hours_remaining} hour(s)"
                
            return False, f"Account temporarily suspended until {timeout.expires_at.strftime('%Y-%m-%d %H:%M')} ({time_str} remaining). Reason: {timeout.reason}", 0
    except ImportError:
        # If models import fails, continue with other checks
        pass
    except Exception as e:
        logger.error(f"Error checking user timeout: {str(e)}")
    
    # Check security score
    score, factors = check_user_security_score(user_id)
    
    # Very low scores are blocked
    if score < 20:
        return False, f"Security score too low: {score}/100", score
    
    # Check for recent suspicious activity
    if factors.get('suspicious_voting'):
        return False, f"Suspicious voting pattern detected: {factors.get('suspicious_reason')}", score
    
    if factors.get('rapid_voting'):
        return False, f"Voting too rapidly (avg interval: {factors.get('avg_vote_interval', 0):.1f}s)", score
    
    # Additional IP-based checks could go here
    
    return True, "Vote allowed", score