Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 28,258 Bytes
c055e89 7927ab2 cd5bd26 ca8a2ca 1ace391 74744eb f1fda32 ca8a2ca c991ae0 ca8a2ca 96cca69 ca8a2ca c055e89 cd5bd26 c3e4d11 74744eb cd5bd26 0e3778b 9dd70a7 69be213 1d58cd7 5cd0e1e ccf5c81 5cd0e1e 6433dba 1d58cd7 cd5bd26 abcae38 cd5bd26 1ec31d9 f95f048 1ec31d9 67d05e3 2ca5c30 f95f048 2ca5c30 abcae38 0e3778b 1ec31d9 cd5bd26 69be213 cd5bd26 ca8a2ca 6433dba cd5bd26 e5109be 18d89f0 4255bad 18d89f0 acfaa5a 20dc216 375d701 20dc216 18d89f0 637cb4e c991ae0 3a0e8ae 18d89f0 3a0e8ae 18d89f0 c055e89 cd5bd26 0217d78 c055e89 cd5bd26 c055e89 3a0e8ae c055e89 83020c7 29a5f2c f7860cf 29a5f2c 83020c7 29a5f2c 83020c7 29a5f2c 83020c7 ccf5c81 83020c7 ccf5c81 83020c7 c055e89 0636bf7 cea913e c62c303 c991ae0 c055e89 20dc216 a2f2037 20dc216 3a0e8ae aea0389 3a0e8ae aea0389 20dc216 c055e89 20dc216 cd5bd26 69be213 cd5bd26 1cb88a1 cd5bd26 ca8a2ca cd5bd26 1cb88a1 cd5bd26 18d89f0 cd5bd26 18d89f0 20dc216 18d89f0 20dc216 29a5f2c 20dc216 1cb88a1 20dc216 e080e91 18d89f0 29a5f2c 48707ff 29a5f2c e080e91 ee22100 9952550 e080e91 29a5f2c 2bb5d82 cd5bd26 2bb5d82 20dc216 2bb5d82 2c89463 ecca97f 9068c64 71abf2f 9952550 ecca97f 2c89463 40f7a3f 2c89463 03d6969 2c89463 03d6969 2c89463 433517c af37f5e 3425a41 20dc216 3679f5d cd5bd26 20dc216 2ca5c30 3425a41 20dc216 3679f5d cd5bd26 20dc216 cd5bd26 433517c af37f5e 99f01ee 8ae6da1 9ae8c4d 8ae6da1 af37f5e 2b0c2d0 433517c af37f5e 99f01ee 8ae6da1 9ae8c4d 8ae6da1 af37f5e 2b0c2d0 433517c af37f5e 99f01ee af37f5e 10801ae 433517c af37f5e 99f01ee af37f5e 10801ae 2b0c2d0 18d89f0 5404187 c4e7fbc ee22100 2b0c2d0 ee22100 6aa0fa6 2b0c2d0 009ac4f 6c142f7 009ac4f 6c142f7 0830050 1925e72 2b0c2d0 b0986f3 20dc216 cd5bd26 03d6969 aea0389 637cb4e b0986f3 0636bf7 1ace391 4478ce8 1ace391 4478ce8 dc46588 09cd5ce ca8a2ca 619c449 c3e4d11 74744eb 637cb4e 74744eb dc46588 b72e390 375d701 ca8a2ca 88f76ee 2ca5c30 73c86b6 9dc87ec c38b1b1 73c86b6 c38b1b1 73c86b6 c823dc3 7927ab2 73c86b6 7927ab2 09cd5ce f1fda32 1f4eba7 20dc216 5147f0b 20dc216 7366b46 f1fda32 172fbec c09bde4 f1fda32 7366b46 1ba9e48 a629389 c4e7fbc 88f76ee a629389 c4e7fbc 88f76ee 6b71cc7 c4e7fbc 6b71cc7 36d9fca 1925e72 9594ec2 c4e7fbc 6b71cc7 ca8a2ca 0636bf7 20dc216 0636bf7 20dc216 c055e89 9983762 8abe551 20dc216 9983762 2519d7f d0dc5de 353a56a 2519d7f cd5bd26 726da94 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 |
import gradio as gr
import pandas as pd
from datasets import load_dataset
import threading, time, uuid, sqlite3, shutil, os, random, asyncio, threading
from pathlib import Path
from huggingface_hub import CommitScheduler, delete_file, hf_hub_download
from gradio_client import Client
import pyloudnorm as pyln
import soundfile as sf
from detoxify import Detoxify
toxicity = Detoxify('original')
with open('harvard_sentences.txt') as f:
sents = f.read().strip().splitlines()
####################################
# Constants
####################################
AVAILABLE_MODELS = {
'XTTSv2': 'xtts',
'WhisperSpeech': 'whisperspeech',
'ElevenLabs': 'eleven',
'OpenVoice': 'openvoice',
'Pheme': 'pheme',
'MetaVoice': 'metavoice'
}
SPACE_ID = os.getenv('HF_ID')
MAX_SAMPLE_TXT_LENGTH = 150
MIN_SAMPLE_TXT_LENGTH = 10
DB_DATASET_ID = os.getenv('DATASET_ID')
DB_NAME = "database.db"
# If /data available => means local storage is enabled => let's use it!
DB_PATH = f"/data/{DB_NAME}" if os.path.isdir("/data") else DB_NAME
print(f"Using {DB_PATH}")
# AUDIO_DATASET_ID = "ttseval/tts-arena-new"
CITATION_TEXT = """@misc{tts-arena,
title = {Text to Speech Arena},
author = {mrfakename and Srivastav, Vaibhav and Fourrier, Clémentine and Pouget, Lucain and Lacombe, Yoach and main and Sanchit Gandhi},
year = 2024,
publisher = {Hugging Face},
howpublished = "\\url{https://huggingface.co/spaces/TTS-AGI/TTS-Arena}"
}"""
####################################
# Functions
####################################
def create_db_if_missing():
conn = get_db()
cursor = conn.cursor()
cursor.execute('''
CREATE TABLE IF NOT EXISTS model (
name TEXT UNIQUE,
upvote INTEGER,
downvote INTEGER
);
''')
cursor.execute('''
CREATE TABLE IF NOT EXISTS vote (
id INTEGER PRIMARY KEY AUTOINCREMENT,
username TEXT,
model TEXT,
vote INTEGER,
timestamp TIMESTAMP DEFAULT CURRENT_TIMESTAMP
);
''')
cursor.execute('''
CREATE TABLE IF NOT EXISTS votelog (
id INTEGER PRIMARY KEY AUTOINCREMENT,
username TEXT,
chosen TEXT,
rejected TEXT,
timestamp TIMESTAMP DEFAULT CURRENT_TIMESTAMP
);
''')
cursor.execute('''
CREATE TABLE IF NOT EXISTS spokentext (
id INTEGER PRIMARY KEY AUTOINCREMENT,
spokentext TEXT,
timestamp TIMESTAMP DEFAULT CURRENT_TIMESTAMP
);
''')
def get_db():
return sqlite3.connect(DB_PATH)
####################################
# Space initialization
####################################
# Download existing DB
if not os.path.isfile(DB_PATH):
print("Downloading DB...")
try:
cache_path = hf_hub_download(repo_id=DB_DATASET_ID, repo_type='dataset', filename=DB_NAME)
shutil.copyfile(cache_path, DB_PATH)
print("Downloaded DB")
except Exception as e:
print("Error while downloading DB:", e)
# Create DB table (if doesn't exist)
create_db_if_missing()
# Sync local DB with remote repo every 5 minute (only if a change is detected)
scheduler = CommitScheduler(
repo_id=DB_DATASET_ID,
repo_type="dataset",
folder_path=Path(DB_PATH).parent,
every=5,
allow_patterns=DB_NAME,
)
# Load audio dataset
# audio_dataset = load_dataset(AUDIO_DATASET_ID)
####################################
# Router API
####################################
router = Client("TTS-AGI/tts-router", hf_token=os.getenv('HF_TOKEN'))
####################################
# Gradio app
####################################
MUST_BE_LOGGEDIN = "Please login with Hugging Face to participate in the TTS Arena."
DESCR = """
# TTS Arena: Benchmarking TTS Models in the Wild
Vote to find the best Text-to-Speech model out there!
""".strip()
# INSTR = """
# ## Instructions
# * Listen to two anonymous models
# * Vote on which synthesized audio sounds more natural to you
# * If there's a tie, click Skip
# **When you're ready to begin, login and begin voting!** The model names will be revealed once you vote.
# """.strip()
INSTR = """
## Instructions
* Input the text (English only) to synthesise audio (or press 🎲 for random text).
* Listen to the two audio clips, one after the other.
* Vote on which audio sounds more natural to you.
* Model names are revealed after the vote is cast.
## Synthesise now!
""".strip()
request = ''
if SPACE_ID:
request = f"""
### Request Model
Please fill out [this form](https://huggingface.co/spaces/{SPACE_ID}/discussions/new?title=%5BModel+Request%5D+&description=%23%23%20Model%20Request%0A%0A%2A%2AModel%20website%2Fpaper%20%28if%20applicable%29%2A%2A%3A%0A%2A%2AModel%20available%20on%2A%2A%3A%20%28coqui%7CHF%20pipeline%7Ccustom%20code%29%0A%2A%2AWhy%20do%20you%20want%20this%20model%20added%3F%2A%2A%0A%2A%2AComments%3A%2A%2A) to request a model.
"""
ABOUT = f"""
## 📄 About
The TTS Arena is a project created to evaluate leading speech synthesis models. It is inspired by the [Chatbot Arena](https://chat.lmsys.org/) by LMSys.
### Motivation
The field of speech synthesis has long lacked an accurate method to measure the quality of different models. Objective metrics like WER (word error rate) are unreliable measures of model quality, and subjective measures such as MOS (mean opinion score) are typically small-scale experiments conducted with few listeners. As a result, these measurements are generally not useful for comparing two models of roughly similar quality. To address these drawbacks, we are inviting the community to rank models in an easy-to-use interface, and opening it up to the public in order to make both the opportunity to rank models, as well as the results, more easily accessible to everyone.
### Credits
Thank you to the following individuals who helped make this project possible:
* VB ([Twitter](https://twitter.com/reach_vb) / [Hugging Face](https://huggingface.co/reach-vb))
* Clémentine Fourrier ([Twitter](https://twitter.com/clefourrier) / [Hugging Face](https://huggingface.co/clefourrier))
* Lucain Pouget ([Twitter](https://twitter.com/Wauplin) / [Hugging Face](https://huggingface.co/Wauplin))
* Yoach Lacombe ([Twitter](https://twitter.com/yoachlacombe) / [Hugging Face](https://huggingface.co/ylacombe))
* Main Horse ([Twitter](https://twitter.com/main_horse) / [Hugging Face](https://huggingface.co/main-horse))
* Sanchit Gandhi ([Twitter](https://twitter.com/sanchitgandhi99) / [Hugging Face](https://huggingface.co/sanchit-gandhi))
* Apolinário Passos ([Twitter](https://twitter.com/multimodalart) / [Hugging Face](https://huggingface.co/multimodalart))
* Pedro Cuenca ([Twitter](https://twitter.com/pcuenq) / [Hugging Face](https://huggingface.co/pcuenq))
{request}
### Privacy Statement
We may store text you enter and generated audio. We store a unique ID for each session. You agree that we may collect, share, and/or publish any data you input for research and/or commercial purposes.
### License
Generated audio clips cannot be redistributed and used for personal, non-commercial use only.
""".strip()
LDESC = """
## 🏆 Leaderboard
A list of the models based on how natural they sound (according to the votes cast)!
Important: The leaderboard will be hidden by default until a human ratings threshold has been achieved to keep the results fair.
Tick the `Reveal Preliminary Results` checkbox below if you wish to see the raw data.
""".strip()
# def reload_audio_dataset():
# global audio_dataset
# audio_dataset = load_dataset(AUDIO_DATASET_ID)
# return 'Reload Audio Dataset'
def del_db(txt):
if not txt.lower() == 'delete db':
raise gr.Error('You did not enter "delete db"')
# Delete local + remote
os.remove(DB_PATH)
delete_file(path_in_repo=DB_NAME, repo_id=DB_DATASET_ID, repo_type='dataset')
# Recreate
create_db_if_missing()
return 'Delete DB'
theme = gr.themes.Base(
font=[gr.themes.GoogleFont('Libre Franklin'), gr.themes.GoogleFont('Public Sans'), 'system-ui', 'sans-serif'],
)
model_names = {
'styletts2': 'StyleTTS 2',
'tacotron': 'Tacotron',
'tacotronph': 'Tacotron Phoneme',
'tacotrondca': 'Tacotron DCA',
'speedyspeech': 'Speedy Speech',
'overflow': 'Overflow TTS',
'vits': 'VITS',
'vitsneon': 'VITS Neon',
'neuralhmm': 'Neural HMM',
'glow': 'Glow TTS',
'fastpitch': 'FastPitch',
'jenny': 'Jenny',
'tortoise': 'Tortoise TTS',
'xtts2': 'Coqui XTTSv2',
'xtts': 'Coqui XTTS',
'openvoice': 'MyShell OpenVoice',
'elevenlabs': 'ElevenLabs',
'openai': 'OpenAI',
'hierspeech': 'HierSpeech++',
'pheme': 'PolyAI Pheme',
'speecht5': 'SpeechT5',
'metavoice': 'MetaVoice-1B',
}
model_licenses = {
'styletts2': 'MIT',
'tacotron': 'BSD-3',
'tacotronph': 'BSD-3',
'tacotrondca': 'BSD-3',
'speedyspeech': 'BSD-3',
'overflow': 'MIT',
'vits': 'MIT',
'openvoice': 'MIT',
'vitsneon': 'BSD-3',
'neuralhmm': 'MIT',
'glow': 'MIT',
'fastpitch': 'Apache 2.0',
'jenny': 'Jenny License',
'tortoise': 'Apache 2.0',
'xtts2': 'CPML (NC)',
'xtts': 'CPML (NC)',
'elevenlabs': 'Proprietary',
'eleven': 'Proprietary',
'openai': 'Proprietary',
'hierspeech': 'MIT',
'pheme': 'CC-BY',
'speecht5': 'MIT',
'metavoice': 'Apache 2.0',
'elevenlabs': 'Proprietary',
'whisperspeech': 'MIT',
}
model_links = {
'styletts2': 'https://github.com/yl4579/StyleTTS2',
'tacotron': 'https://github.com/NVIDIA/tacotron2',
'speedyspeech': 'https://github.com/janvainer/speedyspeech',
'overflow': 'https://github.com/shivammehta25/OverFlow',
'vits': 'https://github.com/jaywalnut310/vits',
'openvoice': 'https://github.com/myshell-ai/OpenVoice',
'neuralhmm': 'https://github.com/ketranm/neuralHMM',
'glow': 'https://github.com/jaywalnut310/glow-tts',
'fastpitch': 'https://fastpitch.github.io/',
'tortoise': 'https://github.com/neonbjb/tortoise-tts',
'xtts2': 'https://huggingface.co/coqui/XTTS-v2',
'xtts': 'https://huggingface.co/coqui/XTTS-v1',
'elevenlabs': 'https://elevenlabs.io/',
'openai': 'https://help.openai.com/en/articles/8555505-tts-api',
'hierspeech': 'https://github.com/sh-lee-prml/HierSpeechpp',
'pheme': 'https://github.com/PolyAI-LDN/pheme',
'speecht5': 'https://github.com/microsoft/SpeechT5',
'metavoice': 'https://github.com/metavoiceio/metavoice-src',
}
# def get_random_split(existing_split=None):
# choice = random.choice(list(audio_dataset.keys()))
# if existing_split and choice == existing_split:
# return get_random_split(choice)
# else:
# return choice
# def get_random_splits():
# choice1 = get_random_split()
# choice2 = get_random_split(choice1)
# return (choice1, choice2)
def model_license(name):
print(name)
for k, v in AVAILABLE_MODELS.items():
if k == name:
if v in model_licenses:
return model_licenses[v]
print('---')
return 'Unknown'
def get_leaderboard(reveal_prelim: bool):
conn = get_db()
cursor = conn.cursor()
sql = 'SELECT name, upvote, downvote FROM model'
# if not reveal_prelim: sql += ' WHERE EXISTS (SELECT 1 FROM model WHERE (upvote + downvote) > 750)'
if not reveal_prelim: sql += ' WHERE (upvote + downvote) > 500'
cursor.execute(sql)
data = cursor.fetchall()
df = pd.DataFrame(data, columns=['name', 'upvote', 'downvote'])
# df['license'] = df['name'].map(model_license)
df['name'] = df['name'].replace(model_names)
df['votes'] = df['upvote'] + df['downvote']
# df['score'] = round((df['upvote'] / df['votes']) * 100, 2) # Percentage score
## ELO SCORE
df['score'] = 1200
for i in range(len(df)):
for j in range(len(df)):
if i != j:
expected_a = 1 / (1 + 10 ** ((df['score'][j] - df['score'][i]) / 400))
expected_b = 1 / (1 + 10 ** ((df['score'][i] - df['score'][j]) / 400))
actual_a = df['upvote'][i] / df['votes'][i]
actual_b = df['upvote'][j] / df['votes'][j]
df.at[i, 'score'] += 32 * (actual_a - expected_a)
df.at[j, 'score'] += 32 * (actual_b - expected_b)
df['score'] = round(df['score'])
## ELO SCORE
df = df.sort_values(by='score', ascending=False)
df['order'] = ['#' + str(i + 1) for i in range(len(df))]
# df = df[['name', 'score', 'upvote', 'votes']]
# df = df[['order', 'name', 'score', 'license', 'votes']]
df = df[['order', 'name', 'score', 'votes']]
return df
def mkuuid(uid):
if not uid:
uid = uuid.uuid4()
return uid
def upvote_model(model, uname):
conn = get_db()
cursor = conn.cursor()
cursor.execute('UPDATE model SET upvote = upvote + 1 WHERE name = ?', (model,))
if cursor.rowcount == 0:
cursor.execute('INSERT OR REPLACE INTO model (name, upvote, downvote) VALUES (?, 1, 0)', (model,))
cursor.execute('INSERT INTO vote (username, model, vote) VALUES (?, ?, ?)', (uname, model, 1,))
with scheduler.lock:
conn.commit()
cursor.close()
def log_text(text):
conn = get_db()
cursor = conn.cursor()
cursor.execute('INSERT INTO spokentext (spokentext) VALUES (?)', (text,))
with scheduler.lock:
conn.commit()
cursor.close()
def downvote_model(model, uname):
conn = get_db()
cursor = conn.cursor()
cursor.execute('UPDATE model SET downvote = downvote + 1 WHERE name = ?', (model,))
if cursor.rowcount == 0:
cursor.execute('INSERT OR REPLACE INTO model (name, upvote, downvote) VALUES (?, 0, 1)', (model,))
cursor.execute('INSERT INTO vote (username, model, vote) VALUES (?, ?, ?)', (uname, model, -1,))
with scheduler.lock:
conn.commit()
cursor.close()
def a_is_better(model1, model2, userid):
userid = mkuuid(userid)
if model1 and model2:
conn = get_db()
cursor = conn.cursor()
cursor.execute('INSERT INTO votelog (username, chosen, rejected) VALUES (?, ?, ?)', (str(userid), model1, model2,))
with scheduler.lock:
conn.commit()
cursor.close()
upvote_model(model1, str(userid))
downvote_model(model2, str(userid))
return reload(model1, model2, userid, chose_a=True)
def b_is_better(model1, model2, userid):
userid = mkuuid(userid)
if model1 and model2:
conn = get_db()
cursor = conn.cursor()
cursor.execute('INSERT INTO votelog (username, chosen, rejected) VALUES (?, ?, ?)', (str(userid), model2, model1,))
with scheduler.lock:
conn.commit()
cursor.close()
upvote_model(model2, str(userid))
downvote_model(model1, str(userid))
return reload(model1, model2, userid, chose_b=True)
def both_bad(model1, model2, userid):
userid = mkuuid(userid)
if model1 and model2:
downvote_model(model1, str(userid))
downvote_model(model2, str(userid))
return reload(model1, model2, userid)
def both_good(model1, model2, userid):
userid = mkuuid(userid)
if model1 and model2:
upvote_model(model1, str(userid))
upvote_model(model2, str(userid))
return reload(model1, model2, userid)
def reload(chosenmodel1=None, chosenmodel2=None, userid=None, chose_a=False, chose_b=False):
# Select random splits
# row = random.choice(list(audio_dataset['train']))
# options = list(random.choice(list(audio_dataset['train'])).keys())
# split1, split2 = random.sample(options, 2)
# choice1, choice2 = (row[split1], row[split2])
# if chosenmodel1 in model_names:
# chosenmodel1 = model_names[chosenmodel1]
# if chosenmodel2 in model_names:
# chosenmodel2 = model_names[chosenmodel2]
# out = [
# (choice1['sampling_rate'], choice1['array']),
# (choice2['sampling_rate'], choice2['array']),
# split1,
# split2
# ]
# if userid: out.append(userid)
# if chosenmodel1: out.append(f'This model was {chosenmodel1}')
# if chosenmodel2: out.append(f'This model was {chosenmodel2}')
# return out
# return (f'This model was {chosenmodel1}', f'This model was {chosenmodel2}', gr.update(visible=False), gr.update(visible=False))
# return (gr.update(variant='secondary', value=chosenmodel1, interactive=False), gr.update(variant='secondary', value=chosenmodel2, interactive=False))
out = [
gr.update(interactive=False, visible=False),
gr.update(interactive=False, visible=False)
]
if chose_a == True:
out.append(gr.update(value=f'Your vote: {chosenmodel1}', interactive=False, visible=True))
out.append(gr.update(value=f'{chosenmodel2}', interactive=False, visible=True))
else:
out.append(gr.update(value=f'{chosenmodel1}', interactive=False, visible=True))
out.append(gr.update(value=f'Your vote: {chosenmodel2}', interactive=False, visible=True))
out.append(gr.update(visible=True))
return out
with gr.Blocks() as leaderboard:
gr.Markdown(LDESC)
# df = gr.Dataframe(interactive=False, value=get_leaderboard())
df = gr.Dataframe(interactive=False, min_width=0, wrap=True, column_widths=[30, 200, 50, 50])
with gr.Row():
reveal_prelim = gr.Checkbox(label="Reveal Preliminary Results", info="Show all models, including models with very few human ratings.", scale=0)
reloadbtn = gr.Button("Refresh")
reveal_prelim.input(get_leaderboard, inputs=[reveal_prelim], outputs=[df])
leaderboard.load(get_leaderboard, inputs=[reveal_prelim], outputs=[df])
reloadbtn.click(get_leaderboard, inputs=[reveal_prelim], outputs=[df])
# gr.Markdown("DISCLAIMER: The licenses listed may not be accurate or up to date, you are responsible for checking the licenses before using the models. Also note that some models may have additional usage restrictions.")
# with gr.Blocks() as vote:
# useridstate = gr.State()
# gr.Markdown(INSTR)
# # gr.LoginButton()
# with gr.Row():
# gr.HTML('<div align="left"><h3>Model A</h3></div>')
# gr.HTML('<div align="right"><h3>Model B</h3></div>')
# model1 = gr.Textbox(interactive=False, visible=False, lines=1, max_lines=1)
# model2 = gr.Textbox(interactive=False, visible=False, lines=1, max_lines=1)
# # with gr.Group():
# # with gr.Row():
# # prevmodel1 = gr.Textbox(interactive=False, show_label=False, container=False, value="Vote to reveal model A")
# # prevmodel2 = gr.Textbox(interactive=False, show_label=False, container=False, value="Vote to reveal model B", text_align="right")
# # with gr.Row():
# # aud1 = gr.Audio(interactive=False, show_label=False, show_download_button=False, show_share_button=False, waveform_options={'waveform_progress_color': '#3C82F6'})
# # aud2 = gr.Audio(interactive=False, show_label=False, show_download_button=False, show_share_button=False, waveform_options={'waveform_progress_color': '#3C82F6'})
# with gr.Group():
# with gr.Row():
# with gr.Column():
# with gr.Group():
# prevmodel1 = gr.Textbox(interactive=False, show_label=False, container=False, value="Vote to reveal model A", lines=1, max_lines=1)
# aud1 = gr.Audio(interactive=False, show_label=False, show_download_button=False, show_share_button=False, waveform_options={'waveform_progress_color': '#3C82F6'})
# with gr.Column():
# with gr.Group():
# prevmodel2 = gr.Textbox(interactive=False, show_label=False, container=False, value="Vote to reveal model B", text_align="right", lines=1, max_lines=1)
# aud2 = gr.Audio(interactive=False, show_label=False, show_download_button=False, show_share_button=False, waveform_options={'waveform_progress_color': '#3C82F6'})
# with gr.Row():
# abetter = gr.Button("A is Better", variant='primary', scale=4)
# # skipbtn = gr.Button("Skip", scale=1)
# bbetter = gr.Button("B is Better", variant='primary', scale=4)
# with gr.Row():
# bothbad = gr.Button("Both are Bad", scale=2)
# skipbtn = gr.Button("Skip", scale=1)
# bothgood = gr.Button("Both are Good", scale=2)
# outputs = [aud1, aud2, model1, model2, useridstate, prevmodel1, prevmodel2]
# abetter.click(a_is_better, outputs=outputs, inputs=[model1, model2, useridstate])
# bbetter.click(b_is_better, outputs=outputs, inputs=[model1, model2, useridstate])
# skipbtn.click(b_is_better, outputs=outputs, inputs=[model1, model2, useridstate])
# bothbad.click(both_bad, outputs=outputs, inputs=[model1, model2, useridstate])
# bothgood.click(both_good, outputs=outputs, inputs=[model1, model2, useridstate])
# vote.load(reload, outputs=[aud1, aud2, model1, model2])
def doloudnorm(path):
data, rate = sf.read(path)
meter = pyln.Meter(rate)
loudness = meter.integrated_loudness(data)
loudness_normalized_audio = pyln.normalize.loudness(data, loudness, -12.0)
sf.write(path, loudness_normalized_audio, rate)
##########################
# 2x speedup (hopefully) #
##########################
def synthandreturn(text):
text = text.strip()
if len(text) > MAX_SAMPLE_TXT_LENGTH:
raise gr.Error(f'You exceeded the limit of {MAX_SAMPLE_TXT_LENGTH} characters')
if len(text) < MIN_SAMPLE_TXT_LENGTH:
raise gr.Error(f'Please input a text longer than {MIN_SAMPLE_TXT_LENGTH} characters')
if (toxicity.predict(text)['toxicity'] > 0.5):
print(f'Detected toxic content! "{text}"')
raise gr.Error('Your text failed the toxicity test')
if not text:
raise gr.Error(f'You did not enter any text')
# Get two random models
mdl1, mdl2 = random.sample(list(AVAILABLE_MODELS.keys()), 2)
log_text(text)
print("[debug] Using", mdl1, mdl2)
def predict_and_update_result(text, model, result_storage):
try:
result = router.predict(text, AVAILABLE_MODELS[model].lower(), api_name="/synthesize")
except:
raise gr.Error('Unable to call API, please try again :)')
print('Done with', model)
result_storage[model] = result
try:
doloudnorm(result)
except:
pass
results = {}
thread1 = threading.Thread(target=predict_and_update_result, args=(text, mdl1, results))
thread2 = threading.Thread(target=predict_and_update_result, args=(text, mdl2, results))
thread1.start()
thread2.start()
thread1.join()
thread2.join()
return (
text,
"Synthesize",
gr.update(visible=True), # r2
mdl1, # model1
mdl2, # model2
gr.update(visible=True, value=results[mdl1]), # aud1
gr.update(visible=True, value=results[mdl2]), # aud2
gr.update(visible=True, interactive=True),
gr.update(visible=True, interactive=True),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False), #nxt round btn
)
# return (
# text,
# "Synthesize",
# gr.update(visible=True), # r2
# mdl1, # model1
# mdl2, # model2
# # 'Vote to reveal model A', # prevmodel1
# gr.update(visible=True, value=router.predict(
# text,
# AVAILABLE_MODELS[mdl1],
# api_name="/synthesize"
# )), # aud1
# # 'Vote to reveal model B', # prevmodel2
# gr.update(visible=True, value=router.predict(
# text,
# AVAILABLE_MODELS[mdl2],
# api_name="/synthesize"
# )), # aud2
# gr.update(visible=True, interactive=True),
# gr.update(visible=True, interactive=True),
# gr.update(visible=False),
# gr.update(visible=False),
# gr.update(visible=False), #nxt round btn
# )
def randomsent():
return random.choice(sents), '🎲'
def clear_stuff():
return "", "Synthesize", gr.update(visible=False), '', '', gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
with gr.Blocks() as vote:
useridstate = gr.State()
gr.Markdown(INSTR)
with gr.Group():
with gr.Row():
text = gr.Textbox(container=False, show_label=False, placeholder="Enter text to synthesize", lines=1, max_lines=1, scale=9999999, min_width=0)
randomt = gr.Button('🎲', scale=0, min_width=0, variant='tool')
randomt.click(randomsent, outputs=[text, randomt])
btn = gr.Button("Synthesize", variant='primary')
model1 = gr.Textbox(interactive=False, lines=1, max_lines=1, visible=False)
model2 = gr.Textbox(interactive=False, lines=1, max_lines=1, visible=False)
with gr.Row(visible=False) as r2:
with gr.Column():
with gr.Group():
aud1 = gr.Audio(interactive=False, show_label=False, show_download_button=False, show_share_button=False, waveform_options={'waveform_progress_color': '#3C82F6'})
abetter = gr.Button("A is better", variant='primary')
prevmodel1 = gr.Textbox(interactive=False, show_label=False, container=False, value="Vote to reveal model A", text_align="center", lines=1, max_lines=1, visible=False)
with gr.Column():
with gr.Group():
aud2 = gr.Audio(interactive=False, show_label=False, show_download_button=False, show_share_button=False, waveform_options={'waveform_progress_color': '#3C82F6'})
bbetter = gr.Button("B is better", variant='primary')
prevmodel2 = gr.Textbox(interactive=False, show_label=False, container=False, value="Vote to reveal model B", text_align="center", lines=1, max_lines=1, visible=False)
nxtroundbtn = gr.Button('Next round', visible=False)
# outputs = [text, btn, r2, model1, model2, prevmodel1, aud1, prevmodel2, aud2, abetter, bbetter]
outputs = [text, btn, r2, model1, model2, aud1, aud2, abetter, bbetter, prevmodel1, prevmodel2, nxtroundbtn]
btn.click(synthandreturn, inputs=[text], outputs=outputs)
nxtroundbtn.click(clear_stuff, outputs=outputs)
# nxt_outputs = [prevmodel1, prevmodel2, abetter, bbetter]
nxt_outputs = [abetter, bbetter, prevmodel1, prevmodel2, nxtroundbtn]
abetter.click(a_is_better, outputs=nxt_outputs, inputs=[model1, model2, useridstate])
bbetter.click(b_is_better, outputs=nxt_outputs, inputs=[model1, model2, useridstate])
# skipbtn.click(b_is_better, outputs=outputs, inputs=[model1, model2, useridstate])
# bothbad.click(both_bad, outputs=outputs, inputs=[model1, model2, useridstate])
# bothgood.click(both_good, outputs=outputs, inputs=[model1, model2, useridstate])
# vote.load(reload, outputs=[aud1, aud2, model1, model2])
with gr.Blocks() as about:
gr.Markdown(ABOUT)
# with gr.Blocks() as admin:
# rdb = gr.Button("Reload Audio Dataset")
# # rdb.click(reload_audio_dataset, outputs=rdb)
# with gr.Group():
# dbtext = gr.Textbox(label="Type \"delete db\" to confirm", placeholder="delete db")
# ddb = gr.Button("Delete DB")
# ddb.click(del_db, inputs=dbtext, outputs=ddb)
with gr.Blocks(theme=theme, css="footer {visibility: hidden}textbox{resize:none}", title="TTS Leaderboard") as demo:
gr.Markdown(DESCR)
# gr.TabbedInterface([vote, leaderboard, about, admin], ['Vote', 'Leaderboard', 'About', 'Admin (ONLY IN BETA)'])
gr.TabbedInterface([vote, leaderboard, about], ['Vote', 'Leaderboard', 'About'])
if CITATION_TEXT:
with gr.Row():
with gr.Accordion("Citation", open=False):
gr.Markdown(f"If you use this data in your publication, please cite us!\n\nCopy the BibTeX citation to cite this source:\n\n```bibtext\n{CITATION_TEXT}\n```\n\nPlease remember that all generated audio clips should be assumed unsuitable for redistribution or commercial use.")
demo.queue(api_open=False, default_concurrency_limit=40).launch(show_api=False) |