File size: 8,083 Bytes
d40e945
 
 
 
 
5d5cc81
d40e945
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ed4a11
5d5cc81
 
d40e945
5d5cc81
 
 
 
d40e945
 
 
 
 
5d5cc81
 
d40e945
 
 
c4f7417
5d5cc81
 
7128513
 
5d5cc81
 
7128513
 
 
5d5cc81
 
 
 
 
d40e945
5d5cc81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6356013
5d5cc81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
from .config import *
from .db import *
from .models import *

import pandas as pd
def get_leaderboard(reveal_prelim = False, hide_battle_votes = False, sort_by_elo = False, hide_proprietary = False):
    conn = get_db()
    cursor = conn.cursor()
    
    if hide_battle_votes:
        sql = '''
        SELECT m.name, 
               SUM(CASE WHEN v.username NOT LIKE '%_battle' AND v.vote = 1 THEN 1 ELSE 0 END) as upvote, 
               SUM(CASE WHEN v.username NOT LIKE '%_battle' AND v.vote = -1 THEN 1 ELSE 0 END) as downvote
        FROM model m
        LEFT JOIN vote v ON m.name = v.model
        GROUP BY m.name
        '''
    else:
        sql = '''
        SELECT name, 
               SUM(CASE WHEN vote = 1 THEN 1 ELSE 0 END) as upvote, 
               SUM(CASE WHEN vote = -1 THEN 1 ELSE 0 END) as downvote
        FROM model
        LEFT JOIN vote ON model.name = vote.model
        GROUP BY name
        '''
    
    cursor.execute(sql)
    data = cursor.fetchall()
    df = pd.DataFrame(data, columns=['name', 'upvote', 'downvote'])
    df['name'] = df['name'].replace(model_names).replace('Anonymous Sparkle', 'Fish Speech v1.5')
    
    # Calculate total votes and win rate
    df['votes'] = df['upvote'] + df['downvote']
    df['win_rate'] = (df['upvote'] / df['votes'] * 100).round(1)
    
    # Remove models with no votes
    df = df[df['votes'] > 0]

    # Filter out rows with insufficient votes if not revealing preliminary results
    if not reveal_prelim:
        df = df[df['votes'] > 500]

    ## Calculate ELO SCORE (kept as secondary metric)
    df['elo'] = 1200
    for i in range(len(df)):
        for j in range(len(df)):
            if i != j:
                try:
                    expected_a = 1 / (1 + 10 ** ((df['elo'].iloc[j] - df['elo'].iloc[i]) / 400))
                    expected_b = 1 / (1 + 10 ** ((df['elo'].iloc[i] - df['elo'].iloc[j]) / 400))
                    actual_a = df['upvote'].iloc[i] / df['votes'].iloc[i] if df['votes'].iloc[i] > 0 else 0.5
                    actual_b = df['upvote'].iloc[j] / df['votes'].iloc[j] if df['votes'].iloc[j] > 0 else 0.5
                    df.iloc[i, df.columns.get_loc('elo')] += 32 * (actual_a - expected_a)
                    df.iloc[j, df.columns.get_loc('elo')] += 32 * (actual_b - expected_b)
                except Exception as e:
                    print(f"Error in ELO calculation for rows {i} and {j}: {str(e)}")
                    continue
    df['elo'] = round(df['elo'])

    # Sort based on user preference
    sort_column = 'elo' if sort_by_elo else 'win_rate'
    df = df.sort_values(by=sort_column, ascending=False)
    df['order'] = ['#' + str(i + 1) for i in range(len(df))]
    
    # Select and order columns for display
    df = df[['order', 'name', 'win_rate', 'votes', 'elo']]
    
    # Remove proprietary models if filter is enabled
    if hide_proprietary:
        df = df[~df['name'].isin(closed_source)]
    
    # Convert DataFrame to markdown table with CSS styling
    markdown_table = """
<style>
/* Reset any Gradio table styles */
.leaderboard-table, 
.leaderboard-table th, 
.leaderboard-table td {
    border: none !important;
    border-collapse: separate !important;
    border-spacing: 0 !important;
}

.leaderboard-container {
    background: var(--background-fill-primary);
    border: 1px solid var(--border-color-primary);
    border-radius: 12px;
    padding: 4px;
    margin: 10px 0;
    width: 100%;
    overflow-x: auto;  /* Enable horizontal scroll */
}

.leaderboard-scroll {
    max-height: 600px;
    overflow-y: auto;
    border-radius: 8px;
}

.leaderboard-table {
    width: 100%;
    border-spacing: 0;
    border-collapse: separate;
    font-size: 15px;
    line-height: 1.5;
    table-layout: auto;  /* Allow flexible column widths */
}

.leaderboard-table th {
    background: var(--background-fill-secondary);
    color: var(--body-text-color);
    font-weight: 600;
    text-align: left;
    padding: 12px 16px;
    position: sticky;
    top: 0;
    z-index: 1;
}

.leaderboard-table th:after {
    content: '';
    position: absolute;
    left: 0;
    bottom: 0;
    width: 100%;
    border-bottom: 1px solid var(--border-color-primary);
}

.leaderboard-table td {
    padding: 12px 16px;
    color: var(--body-text-color);
}

.leaderboard-table tr td {
    border-bottom: 1px solid var(--border-color-primary);
}

.leaderboard-table tr:last-child td {
    border-bottom: none;
}

.leaderboard-table tr:hover td {
    background: var(--background-fill-secondary);
}

/* Column-specific styles */
.leaderboard-table .col-rank {
    width: 70px;
    min-width: 70px;  /* Prevent rank from shrinking */
}

.leaderboard-table .col-model {
    min-width: 200px;  /* Minimum width before scrolling */
}

.leaderboard-table .col-winrate {
    width: 100px;
    min-width: 100px;  /* Prevent win rate from shrinking */
}

.leaderboard-table .col-votes {
    width: 100px;
    min-width: 100px;  /* Prevent votes from shrinking */
}

.leaderboard-table .col-arena {
    width: 100px;
    min-width: 100px;  /* Prevent arena score from shrinking */
}

.win-rate {
    display: inline-block;
    font-weight: 600;
    padding: 4px 8px;
    border-radius: 6px;
    min-width: 65px;
    text-align: center;
}

.win-rate-excellent {
    background-color: var(--color-accent);
    color: var(--color-accent-foreground);
}

.win-rate-good {
    background-color: var(--color-accent-soft);
    color: var(--body-text-color);
}

.win-rate-average {
    background-color: var(--background-fill-secondary);
    color: var(--body-text-color);
    border: 1px solid var(--border-color-primary);
}

.win-rate-below {
    background-color: var(--error-background-fill);
    color: var(--body-text-color);
}

.model-link {
    color: var(--body-text-color) !important;
    text-decoration: none !important;
    border-bottom: 2px dashed rgba(128, 128, 128, 0.3);
}

.model-link:hover {
    color: var(--color-accent) !important;
    border-bottom-color: var(--color-accent) !important;
}

.proprietary-badge {
    display: inline-block;
    font-size: 12px;
    padding: 2px 6px;
    border-radius: 4px;
    background-color: var(--background-fill-secondary);
    color: var(--body-text-color);
    margin-left: 6px;
    border: 1px solid var(--border-color-primary);
}
</style>
<div class="leaderboard-container">
<div class="leaderboard-scroll">
<table class="leaderboard-table">
<thead>
<tr>
<th class="col-rank">Rank</th>
<th class="col-model">Model</th>
<th class="col-winrate">Win Rate</th>
<th class="col-votes">Votes</th>
""" + ("""<th class="col-arena">Arena Score</th>""" if sort_by_elo else "") + """
</tr>
</thead>
<tbody>
"""
    
    def get_win_rate_class(win_rate):
        if win_rate >= 60:
            return "win-rate-excellent"
        elif win_rate >= 55:
            return "win-rate-good"
        elif win_rate >= 45:
            return "win-rate-average"
        else:
            return "win-rate-below"
    
    for _, row in df.iterrows():
        win_rate_class = get_win_rate_class(row['win_rate'])
        win_rate_html = f'<span class="win-rate {win_rate_class}">{row["win_rate"]}%</span>'
        
        # Add link to model name if available and proprietary badge if closed source
        model_name = row['name']
        original_model_name = model_name
        if model_name in model_links:
            model_name = f'<a href="{model_links[model_name]}" target="_blank" class="model-link">{model_name}</a>'
        
        if original_model_name in closed_source:
            model_name += '<span class="proprietary-badge">Proprietary</span>'
        
        markdown_table += f'''<tr>
            <td class="col-rank">{row['order']}</td>
            <td class="col-model">{model_name}</td>
            <td class="col-winrate">{win_rate_html}</td>
            <td class="col-votes">{row['votes']:,}</td>''' + (
            f'''<td class="col-arena">{int(row['elo'])}</td>''' if sort_by_elo else ""
        ) + "</tr>\n"
    
    markdown_table += "</tbody></table></div></div>"
    return markdown_table