Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
DESCR = """ | |
# TTS Arena | |
Vote on different speech synthesis models! | |
## Instructions | |
* Listen to two anonymous models | |
* Vote on which one is more natural and realistic | |
* If there's a tie, click Skip | |
*IMPORTANT: Do not only rank the outputs based on naturalness. Also rank based on intelligibility (can you actually tell what they're saying?) and other factors (does it sound like a human?).* | |
**When you're ready to begin, click the Start button below!** The model names will be revealed once you vote. | |
""".strip() | |
import gradio as gr | |
import random | |
import os | |
from datasets import load_dataset | |
dataset = load_dataset("ttseval/tts-arena", token=os.getenv('HF_TOKEN')) | |
theme = gr.themes.Base( | |
font=[gr.themes.GoogleFont('Libre Franklin'), gr.themes.GoogleFont('Public Sans'), 'system-ui', 'sans-serif'], | |
) | |
model_names = { | |
'styletts2': 'StyleTTS 2', | |
'tacotron': 'Tacotron', | |
'speedyspeech': 'Speedy Speech', | |
'overflow': 'Overflow TTS', | |
'vits': 'VITS', | |
'vitsneon': 'VITS Neon', | |
'neuralhmm': 'Neural HMM', | |
'glow': 'Glow TTS', | |
'fastpitch': 'FastPitch', | |
} | |
def get_random_split(existing_split=None): | |
choice = random.choice(list(dataset.keys())) | |
if existing_split and choice == existing_split: | |
return get_random_split(choice) | |
else: | |
return choice | |
def get_random_splits(): | |
choice1 = get_random_split() | |
choice2 = get_random_split(choice1) | |
return (choice1, choice2) | |
def a_is_better(model1, model2): | |
chosen_model = model1 | |
print(chosen_model) | |
return reload(model1, model2) | |
def b_is_better(model1, model2): | |
chosen_model = model2 | |
print(chosen_model) | |
return reload(model1, model2) | |
def reload(chosenmodel1=None, chosenmodel2=None): | |
# Select random splits | |
split1, split2 = get_random_splits() | |
d1, d2 = (dataset[split1], dataset[split2]) | |
choice1, choice2 = (d1.shuffle()[0]['audio'], d2.shuffle()[0]['audio']) | |
if split1 in model_names: | |
split1 = model_names[split1] | |
if split2 in model_names: | |
split2 = model_names[split2] | |
out = [ | |
(choice1['sampling_rate'], choice1['array']), | |
(choice2['sampling_rate'], choice2['array']), | |
split1, | |
split2 | |
] | |
if chosenmodel1: out.append(f'This model was {chosenmodel1}') | |
if chosenmodel2: out.append(f'This model was {chosenmodel2}') | |
return out | |
with gr.Blocks(theme=theme) as demo: | |
# with gr.Blocks() as demo: | |
gr.Markdown(DESCR) | |
with gr.Row(): | |
gr.HTML('<div align="left"><h3>Model A</h3></div>') | |
gr.HTML('<div align="right"><h3>Model B</h3></div>') | |
model1 = gr.Textbox(interactive=False, visible=False) | |
model2 = gr.Textbox(interactive=False, visible=False) | |
with gr.Group(): | |
with gr.Row(): | |
prevmodel1 = gr.Textbox(interactive=False, show_label=False, container=False, value="Vote to reveal model A") | |
prevmodel2 = gr.Textbox(interactive=False, show_label=False, container=False, value="Vote to reveal model B", text_align="right") | |
with gr.Row(): | |
aud1 = gr.Audio(interactive=False, show_label=False, show_download_button=False, show_share_button=False, waveform_options={'waveform_progress_color': '#3C82F6'}) | |
aud2 = gr.Audio(interactive=False, show_label=False, show_download_button=False, show_share_button=False, waveform_options={'waveform_progress_color': '#3C82F6'}) | |
with gr.Row(): | |
abetter = gr.Button("A is Better", scale=3) | |
skipbtn = gr.Button("Skip", scale=1) | |
bbetter = gr.Button("B is Better", scale=3) | |
outputs = [aud1, aud2, model1, model2, prevmodel1, prevmodel2] | |
abetter.click(a_is_better, outputs=outputs, inputs=[model1, model2]) | |
bbetter.click(b_is_better, outputs=outputs, inputs=[model1, model2]) | |
skipbtn.click(b_is_better, outputs=outputs, inputs=[model1, model2]) | |
demo.load(reload, outputs=[aud1, aud2, model1, model2]) | |
demo.queue(api_open=False).launch(show_api=False) |