Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
from .config import * | |
from .db import * | |
from .models import * | |
import pandas as pd | |
def get_leaderboard(reveal_prelim = False, hide_battle_votes = False): | |
conn = get_db() | |
cursor = conn.cursor() | |
if hide_battle_votes: | |
sql = ''' | |
SELECT m.name, | |
SUM(CASE WHEN v.username NOT LIKE '%_battle' AND v.vote = 1 THEN 1 ELSE 0 END) as upvote, | |
SUM(CASE WHEN v.username NOT LIKE '%_battle' AND v.vote = -1 THEN 1 ELSE 0 END) as downvote | |
FROM model m | |
LEFT JOIN vote v ON m.name = v.model | |
GROUP BY m.name | |
''' | |
else: | |
sql = ''' | |
SELECT name, | |
SUM(CASE WHEN vote = 1 THEN 1 ELSE 0 END) as upvote, | |
SUM(CASE WHEN vote = -1 THEN 1 ELSE 0 END) as downvote | |
FROM model | |
LEFT JOIN vote ON model.name = vote.model | |
GROUP BY name | |
''' | |
cursor.execute(sql) | |
data = cursor.fetchall() | |
df = pd.DataFrame(data, columns=['name', 'upvote', 'downvote']) | |
df['name'] = df['name'].replace(model_names) | |
df['votes'] = df['upvote'] + df['downvote'] | |
# Filter out rows with insufficient votes if not revealing preliminary results | |
if not reveal_prelim: | |
df = df[df['votes'] > 500] | |
## ELO SCORE | |
df['score'] = 1200 | |
for i in range(len(df)): | |
for j in range(len(df)): | |
if i != j: | |
try: | |
expected_a = 1 / (1 + 10 ** ((df['score'].iloc[j] - df['score'].iloc[i]) / 400)) | |
expected_b = 1 / (1 + 10 ** ((df['score'].iloc[i] - df['score'].iloc[j]) / 400)) | |
actual_a = df['upvote'].iloc[i] / df['votes'].iloc[i] if df['votes'].iloc[i] > 0 else 0.5 | |
actual_b = df['upvote'].iloc[j] / df['votes'].iloc[j] if df['votes'].iloc[j] > 0 else 0.5 | |
df.iloc[i, df.columns.get_loc('score')] += 32 * (actual_a - expected_a) | |
df.iloc[j, df.columns.get_loc('score')] += 32 * (actual_b - expected_b) | |
except Exception as e: | |
print(f"Error in ELO calculation for rows {i} and {j}: {str(e)}") | |
continue | |
df['score'] = round(df['score']) | |
## ELO SCORE | |
df = df.sort_values(by='score', ascending=False) | |
df['order'] = ['#' + str(i + 1) for i in range(len(df))] | |
df = df[['order', 'name', 'score', 'votes']] | |
return df | |