File size: 6,573 Bytes
f55cf7f 4d35689 211ec02 30a70ad 14b71ec 7329e7e 14b71ec b3fa4ae 4d35689 b3fa4ae 4d35689 b3fa4ae 4d35689 b3fa4ae 14b71ec fb1e696 211ec02 4d35689 211ec02 a633897 f36e1ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
---
title: Tachygraphy Microtext Analysis And Normalization
emoji: 💻
colorFrom: red
colorTo: purple
sdk: streamlit
sdk_version: 1.44.0
python_version: "3.12"
app_file: app_main_hf.py
pinned: true
short_description: This project focuses on the Tachygraphy Microtext Analysis
tags:
- machine-learning
- deep-learning
- tachygraphy
- text2text
- microtext
- nlp
- research
- colorful
- demo
---
<!-- ---
title: Tachygraphy Microtext Analysis And Normalization
emoji: 💻
colorFrom: purple
colorTo: gray
sdk: docker
app_file: app_main_hf.py
pinned: false
short_description: This project focuses on the Tachygraphy Microtext Analysis
--- -->
# Tachygraphy-Microtext-Analysis-And-Normalization-Deployment-Source-HuggingFace_Streamlit_JPX14032025
# Tachygraphy Micro-text Analysis And Normalization
<!---
---
title: "Tachygraphy Micro-text Analysis & Normalization"
emoji: "⚡"
colorFrom: "pink"
colorTo: "blue"
sdk: "static"
pinned: false
---
--->
<!-- ---
title: README
emoji: 😻
colorFrom: yellow
colorTo: red
sdk: static
pinned: false
---
-->
<div align="center">
<!--  -->
# Tachygraphy Micro-text Analysis & Normalization
*Welcome to the Tachygraphy Micro-text Analysis & Normalization Project. This page outlines our project’s key stages, sources, sample analysis examples, and team information.*
</div>
---
## Dashboard
### Project Stages
1. **Sentiment Polarity Analysis**
2. **Emotion Mood-tag Analysis**
3. **Text Transformation & Normalization**
4. **Stacked all 3 stages with their best models**
5. **Data Correction & Collection**
### Sources & Deployment Links
| **Training Source** | **Kaggle Collections** | **Hugging Face Org** |
| ------------------- | ---------------------- | -------------------- |
| [GitHub @ Tachygraphy Micro-text Analysis & Normalization](https://github.com/ArchismanKarmakar/Tachygraphy-Microtext-Analysis-And-Normalization) | [Kaggle Dataset](https://www.kaggle.com/datasets/archismancoder/dataset-tachygraphy/data?select=Tachygraphy_MicroText-AIO-V3.xlsx) | [Hugging Face @ Tachygraphy Micro-text Normalization](https://huggingface.co/Tachygraphy-Microtext-Normalization-IEMK25) |
| **Deployment Source** | **Streamlit Deployment** | **Hugging Face Space Deployment** |
| --------------------- | ------------------------ | --------------------------------- |
| [GitHub Deployment Repo](https://github.com/ArchismanKarmakar/Tachygraphy-Microtext-Analysis-And-Normalization-Deployment-Source-HuggingFace_Streamlit_JPX14032025) | [Streamlit App](https://tachygraphy-microtext.streamlit.app/) | [Hugging Face Space](https://huggingface.co/spaces/Tachygraphy-Microtext-Normalization-IEMK25/Tachygraphy-Microtext-Analysis-and-Normalization-ArchismanCoder) |
---
## Project Overview
Tachygraphy—originally developed to expedite writing—has evolved over centuries. In the 1990s, it reappeared as micro‑text, driving faster communication on social media with its “Anytime, Anyplace, Anybody, and Anything (4A)” characteristic. This project focuses on the analysis and normalization of micro‑text (the prevalent informal communication today) to improve NLP tasks such as sentiment analysis, emotion detection, and overall text transformation for clear 4A message decoding.
---
### Sample Example 1
```mermaid
graph TD;
%% Input and normalized text nodes
A["Input Text: i don't know fr y he's sooo sad"]
B["Normalized Text: i do not know for real why he's so sad"]
C["Sentiment"]
A --> B
A -->|Sentiment| C
%% Sentiment value nodes (values inside the boxes)
C -->|Negative| D["0.99587"]
C -->|Neutral| E["6.23e-05"]
C -->|Positive| F["2.10e-05"]
%% Converge sentiment nodes to Emotion stage
D -->|Emotion| G
E -->|Emotion| G
F -->|Emotion| G
G["Emotion"]
%% Emotion nodes: arrow labels show emotion category; node boxes show numeric values.
G -->|Anger| H["0.0"]
G -->|Disgust| I["0.0"]
G -->|Fear| J["0.01028"]
G -->|Joy| K["0.0"]
G -->|Neutral| L["0.02194"]
G -->|Sadness| M["1.0"]
G -->|Surprise| N["0.02158"]
A -->|Emotion| G
%% Style the Neutral and Positive sentiment arrows with a lighter stroke.
linkStyle 6 stroke:#cccccc, stroke-width:1px;
linkStyle 7 stroke:#cccccc, stroke-width:1px;
```
### Sample Example 2
```mermaid
graph LR;
%% Input and normalized text nodes
A["Input Text: you rlly think all that talk means u tough? lol, when I step up, u ain't gon say sh*t"]
B["Normalized Text: you really think all that talk makes you tough [lol](laughed out loud) when i step up you are not going to say anything"]
C["Sentiment"]
A --> B
A -->|Sentiment| C
%% Sentiment value nodes
C -->|Negative| D["0.99999"]
C -->|Neutral| E["6.89e-06"]
C -->|Positive| F["1.11e-05"]
%% Converge sentiment nodes to Emotion stage
D -->|Emotion| G
E -->|Emotion| G
F -->|Emotion| G
G["Emotion"]
%% Emotion nodes: arrow labels show emotion category; nodes show numeric values.
G -->|Anger| H["0.14403"]
G -->|Disgust| I["0.03928"]
G -->|Fear| J["0.01435"]
G -->|Joy| K["0.04897"]
G -->|Neutral| L["0.49485"]
G -->|Sadness| M["0.02111"]
G -->|Surprise| N["0.23741"]
A -->|Emotion| G
%% Style the Neutral and Positive sentiment arrows with a lighter stroke.
linkStyle 6 stroke:#cccccc, stroke-width:1px;
linkStyle 7 stroke:#cccccc, stroke-width:1px;
```
### Sample Example 3
```mermaid
graph TD;
%% Input and normalized text nodes
A["Input Text: bruh, floods in Kerala, rescue ops non‑stop 🚁"]
B["Normalized Text: Brother, the floods in Kerala are severe, and rescue operations are ongoing continuously."]
C["Sentiment"]
A --> B
A -->|Sentiment| C
%% Sentiment value nodes
C -->|Negative| D["4.44e-05"]
C -->|Neutral| E["0.99989"]
C -->|Positive| F["7.10e-05"]
%% Converge sentiment nodes to Emotion stage
D -->|Emotion| G
E -->|Emotion| G
F -->|Emotion| G
G["Emotion"]
%% Emotion nodes: arrow labels show emotion category; node boxes show numeric values.
G -->|Anger| H["0.08018"]
G -->|Disgust| I["0.01526"]
G -->|Fear| J["0.60187"]
G -->|Joy| K["0.00411"]
G -->|Neutral| L["0.02194"]
G -->|Sadness| M["1.0"]
G -->|Surprise| N["0.02158"]
A -->|Emotion| G
%% Style the Neutral and Positive sentiment arrows with a lighter stroke.
linkStyle 5 stroke:#cccccc, stroke-width:1px;
linkStyle 7 stroke:#cccccc, stroke-width:1px;
```
|