File size: 6,573 Bytes
f55cf7f
4d35689
211ec02
30a70ad
 
14b71ec
7329e7e
14b71ec
b3fa4ae
4d35689
b3fa4ae
4d35689
 
 
 
 
 
 
 
 
 
b3fa4ae
 
 
4d35689
 
b3fa4ae
 
 
14b71ec
fb1e696
211ec02
 
4d35689
211ec02
a633897
f36e1ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
---
title: Tachygraphy Microtext Analysis And Normalization
emoji: 💻
colorFrom: red
colorTo: purple
sdk: streamlit
sdk_version: 1.44.0
python_version: "3.12"
app_file: app_main_hf.py
pinned: true
short_description: This project focuses on the Tachygraphy Microtext Analysis
tags:
  - machine-learning
  - deep-learning
  - tachygraphy
  - text2text
  - microtext
  - nlp
  - research
  - colorful
  - demo
---


<!-- ---
title: Tachygraphy Microtext Analysis And Normalization
emoji: 💻
colorFrom: purple
colorTo: gray
sdk: docker
app_file: app_main_hf.py
pinned: false
short_description: This project focuses on the Tachygraphy Microtext Analysis
--- -->

# Tachygraphy-Microtext-Analysis-And-Normalization-Deployment-Source-HuggingFace_Streamlit_JPX14032025


# Tachygraphy Micro-text Analysis And Normalization
<!---
---
title: "Tachygraphy Micro-text Analysis & Normalization"
emoji: "⚡"
colorFrom: "pink"
colorTo: "blue"
sdk: "static"
pinned: false
---
--->

<!-- ---
title: README
emoji: 😻
colorFrom: yellow
colorTo: red
sdk: static
pinned: false
---
 -->
 
<div align="center">
  
<!-- ![Project Logo](https://via.placeholder.com/150) -->

# Tachygraphy Micro-text Analysis & Normalization

*Welcome to the Tachygraphy Micro-text Analysis & Normalization Project. This page outlines our project’s key stages, sources, sample analysis examples, and team information.*

</div>

---

## Dashboard

### Project Stages

1. **Sentiment Polarity Analysis**
2. **Emotion Mood-tag Analysis**
3. **Text Transformation & Normalization**
4. **Stacked all 3 stages with their best models**
5. **Data Correction & Collection**

### Sources & Deployment Links

| **Training Source** | **Kaggle Collections** | **Hugging Face Org** |
| ------------------- | ---------------------- | -------------------- |
| [GitHub @ Tachygraphy Micro-text Analysis & Normalization](https://github.com/ArchismanKarmakar/Tachygraphy-Microtext-Analysis-And-Normalization) | [Kaggle Dataset](https://www.kaggle.com/datasets/archismancoder/dataset-tachygraphy/data?select=Tachygraphy_MicroText-AIO-V3.xlsx) | [Hugging Face @ Tachygraphy Micro-text Normalization](https://huggingface.co/Tachygraphy-Microtext-Normalization-IEMK25) |

| **Deployment Source** | **Streamlit Deployment** | **Hugging Face Space Deployment** |
| --------------------- | ------------------------ | --------------------------------- |
| [GitHub Deployment Repo](https://github.com/ArchismanKarmakar/Tachygraphy-Microtext-Analysis-And-Normalization-Deployment-Source-HuggingFace_Streamlit_JPX14032025) | [Streamlit App](https://tachygraphy-microtext.streamlit.app/) | [Hugging Face Space](https://huggingface.co/spaces/Tachygraphy-Microtext-Normalization-IEMK25/Tachygraphy-Microtext-Analysis-and-Normalization-ArchismanCoder) |

---

## Project Overview

Tachygraphy—originally developed to expedite writing—has evolved over centuries. In the 1990s, it reappeared as micro‑text, driving faster communication on social media with its “Anytime, Anyplace, Anybody, and Anything (4A)” characteristic. This project focuses on the analysis and normalization of micro‑text (the prevalent informal communication today) to improve NLP tasks such as sentiment analysis, emotion detection, and overall text transformation for clear 4A message decoding.

---


### Sample Example 1
```mermaid
graph TD;
    %% Input and normalized text nodes
    A["Input Text: i don't know fr y he's sooo sad"]
    B["Normalized Text: i do not know for real why he's so sad"]
    C["Sentiment"]

    A --> B
    A -->|Sentiment| C

    %% Sentiment value nodes (values inside the boxes)
    C -->|Negative| D["0.99587"]
    C -->|Neutral| E["6.23e-05"]
    C -->|Positive| F["2.10e-05"]

    %% Converge sentiment nodes to Emotion stage
    D -->|Emotion| G
    E -->|Emotion| G
    F -->|Emotion| G

    G["Emotion"]

    %% Emotion nodes: arrow labels show emotion category; node boxes show numeric values.
    G -->|Anger| H["0.0"]
    G -->|Disgust| I["0.0"]
    G -->|Fear| J["0.01028"]
    G -->|Joy| K["0.0"]
    G -->|Neutral| L["0.02194"]
    G -->|Sadness| M["1.0"]
    G -->|Surprise| N["0.02158"]
    A -->|Emotion| G

%% Style the Neutral and Positive sentiment arrows with a lighter stroke.
linkStyle 6 stroke:#cccccc, stroke-width:1px;
linkStyle 7 stroke:#cccccc, stroke-width:1px;

```

### Sample Example 2
```mermaid
graph LR;
    %% Input and normalized text nodes
    A["Input Text: you rlly think all that talk means u tough? lol, when I step up, u ain't gon say sh*t"]
    B["Normalized Text: you really think all that talk makes you tough [lol](laughed out loud) when i step up you are not going to say anything"]
    C["Sentiment"]

    A --> B
    A -->|Sentiment| C

    %% Sentiment value nodes
    C -->|Negative| D["0.99999"]
    C -->|Neutral| E["6.89e-06"]
    C -->|Positive| F["1.11e-05"]

    %% Converge sentiment nodes to Emotion stage
    D -->|Emotion| G
    E -->|Emotion| G
    F -->|Emotion| G

    G["Emotion"]

    %% Emotion nodes: arrow labels show emotion category; nodes show numeric values.
    G -->|Anger| H["0.14403"]
    G -->|Disgust| I["0.03928"]
    G -->|Fear| J["0.01435"]
    G -->|Joy| K["0.04897"]
    G -->|Neutral| L["0.49485"]
    G -->|Sadness| M["0.02111"]
    G -->|Surprise| N["0.23741"]
    A -->|Emotion| G

%% Style the Neutral and Positive sentiment arrows with a lighter stroke.
linkStyle 6 stroke:#cccccc, stroke-width:1px;
linkStyle 7 stroke:#cccccc, stroke-width:1px;
```

### Sample Example 3
```mermaid
graph TD;
    %% Input and normalized text nodes
    A["Input Text: bruh, floods in Kerala, rescue ops non‑stop 🚁"]
    B["Normalized Text: Brother, the floods in Kerala are severe, and rescue operations are ongoing continuously."]
    C["Sentiment"]

    A --> B
    A -->|Sentiment| C

    %% Sentiment value nodes
    C -->|Negative| D["4.44e-05"]
    C -->|Neutral| E["0.99989"]
    C -->|Positive| F["7.10e-05"]

    %% Converge sentiment nodes to Emotion stage
    D -->|Emotion| G
    E -->|Emotion| G
    F -->|Emotion| G

    G["Emotion"]

    %% Emotion nodes: arrow labels show emotion category; node boxes show numeric values.
    G -->|Anger| H["0.08018"]
    G -->|Disgust| I["0.01526"]
    G -->|Fear| J["0.60187"]
    G -->|Joy| K["0.00411"]
    G -->|Neutral| L["0.02194"]
    G -->|Sadness| M["1.0"]
    G -->|Surprise| N["0.02158"]
    A -->|Emotion| G

%% Style the Neutral and Positive sentiment arrows with a lighter stroke.
linkStyle 5 stroke:#cccccc, stroke-width:1px;
linkStyle 7 stroke:#cccccc, stroke-width:1px;

```