Archisman Karmakar
commited on
Commit
Β·
853c736
1
Parent(s):
4d35689
2025.03.20.post1 MAJOR
Browse files- README.md +2 -2
- app_main_hf.py +14 -14
- dashboard.py +10 -8
- emotionMoodtag_analysis/__init__.py +0 -0
- emotionMoodtag_analysis/config/stage2_models.json +32 -0
- emotionMoodtag_analysis/emotion_analysis_main.py +317 -0
- emotionMoodtag_analysis/hmv_cfg_base_stage2/__init__.py +0 -0
- {sentiment_analysis/hmv_cfg_base_stage1 β emotionMoodtag_analysis/hmv_cfg_base_stage2}/imports.py +24 -24
- emotionMoodtag_analysis/hmv_cfg_base_stage2/model1.py +89 -0
- emotionMoodtag_analysis/hmv_cfg_base_stage2/model2.py +163 -0
- emotion_analysis.py +0 -9
- poetry.lock +15 -15
- pyproject.toml +1 -1
- pyprojectOLD.toml +2 -1
- requirements.txt +2 -2
- {sentiment_analysis β sentimentPolarity_analysis}/__init__.py +0 -0
- {sentiment_analysis β sentimentPolarity_analysis}/config/stage1_models.json +62 -62
- {sentiment_analysis β sentimentPolarity_analysis}/hmv_cfg_base_stage1/__init__.py +1 -1
- sentimentPolarity_analysis/hmv_cfg_base_stage1/imports.py +25 -0
- {sentiment_analysis β sentimentPolarity_analysis}/hmv_cfg_base_stage1/model1.py +85 -85
- {sentiment_analysis β sentimentPolarity_analysis}/hmv_cfg_base_stage1/model2.py +2 -2
- {sentiment_analysis β sentimentPolarity_analysis}/hmv_cfg_base_stage1/model3.py +0 -0
- {sentiment_analysis β sentimentPolarity_analysis}/hmv_cfg_base_stage1/model4.py +0 -0
- {sentiment_analysis β sentimentPolarity_analysis}/sentiment_analysis_main.py +0 -0
- sentiment_analysis/hmv_cfg_base_stage1/__pycache__/__init__.cpython-310.pyc +0 -0
- sentiment_analysis/hmv_cfg_base_stage1/__pycache__/__init__.cpython-312.pyc +0 -0
- sentiment_analysis/hmv_cfg_base_stage1/__pycache__/model1.cpython-310.pyc +0 -0
- sentiment_analysis/hmv_cfg_base_stage1/__pycache__/model1.cpython-312.pyc +0 -0
README.md
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
---
|
2 |
title: Tachygraphy Microtext Analysis And Normalization
|
3 |
emoji: π»
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: streamlit
|
7 |
sdk_version: 1.43.2
|
8 |
python_version: "3.12"
|
|
|
1 |
---
|
2 |
title: Tachygraphy Microtext Analysis And Normalization
|
3 |
emoji: π»
|
4 |
+
colorFrom: orange
|
5 |
+
colorTo: red
|
6 |
sdk: streamlit
|
7 |
sdk_version: 1.43.2
|
8 |
python_version: "3.12"
|
app_main_hf.py
CHANGED
@@ -39,8 +39,8 @@ import importlib.util
|
|
39 |
# sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), )))
|
40 |
|
41 |
|
42 |
-
from
|
43 |
-
from
|
44 |
from dashboard import show_dashboard
|
45 |
|
46 |
|
@@ -54,15 +54,15 @@ st.set_page_config(
|
|
54 |
|
55 |
def free_memory():
|
56 |
# """Free up CPU & GPU memory before loading a new model."""
|
57 |
-
global current_model, current_tokenizer
|
58 |
|
59 |
-
if current_model is not None:
|
60 |
-
|
61 |
-
|
62 |
|
63 |
-
if current_tokenizer is not None:
|
64 |
-
|
65 |
-
|
66 |
|
67 |
gc.collect() # Force garbage collection for CPU memory
|
68 |
|
@@ -149,19 +149,19 @@ def main():
|
|
149 |
|
150 |
if selection == "Dashboard":
|
151 |
st.cache_resource.clear()
|
152 |
-
|
153 |
show_dashboard()
|
154 |
|
155 |
elif selection == "Stage 1: Sentiment Polarity Analysis":
|
156 |
st.cache_resource.clear()
|
157 |
-
|
158 |
show_sentiment_analysis()
|
159 |
|
160 |
elif selection == "Stage 2: Emotion Mood-tag Analysis":
|
161 |
st.cache_resource.clear()
|
162 |
-
|
163 |
-
|
164 |
-
st.write("This section is under development.")
|
165 |
|
166 |
elif selection == "Stage 3: Text Transformation & Normalization":
|
167 |
st.cache_resource.clear()
|
|
|
39 |
# sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), )))
|
40 |
|
41 |
|
42 |
+
from emotionMoodtag_analysis.emotion_analysis_main import show_emotion_analysis
|
43 |
+
from sentimentPolarity_analysis.sentiment_analysis_main import show_sentiment_analysis
|
44 |
from dashboard import show_dashboard
|
45 |
|
46 |
|
|
|
54 |
|
55 |
def free_memory():
|
56 |
# """Free up CPU & GPU memory before loading a new model."""
|
57 |
+
# global current_model, current_tokenizer
|
58 |
|
59 |
+
# if current_model is not None:
|
60 |
+
# del current_model # Delete the existing model
|
61 |
+
# current_model = None # Reset reference
|
62 |
|
63 |
+
# if current_tokenizer is not None:
|
64 |
+
# del current_tokenizer # Delete the tokenizer
|
65 |
+
# current_tokenizer = None
|
66 |
|
67 |
gc.collect() # Force garbage collection for CPU memory
|
68 |
|
|
|
149 |
|
150 |
if selection == "Dashboard":
|
151 |
st.cache_resource.clear()
|
152 |
+
free_memory()
|
153 |
show_dashboard()
|
154 |
|
155 |
elif selection == "Stage 1: Sentiment Polarity Analysis":
|
156 |
st.cache_resource.clear()
|
157 |
+
free_memory()
|
158 |
show_sentiment_analysis()
|
159 |
|
160 |
elif selection == "Stage 2: Emotion Mood-tag Analysis":
|
161 |
st.cache_resource.clear()
|
162 |
+
free_memory()
|
163 |
+
show_emotion_analysis()
|
164 |
+
# st.write("This section is under development.")
|
165 |
|
166 |
elif selection == "Stage 3: Text Transformation & Normalization":
|
167 |
st.cache_resource.clear()
|
dashboard.py
CHANGED
@@ -11,15 +11,15 @@ sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), )))
|
|
11 |
|
12 |
def free_memory():
|
13 |
# """Free up CPU & GPU memory before loading a new model."""
|
14 |
-
global current_model, current_tokenizer
|
15 |
|
16 |
-
if current_model is not None:
|
17 |
-
|
18 |
-
|
19 |
|
20 |
-
if current_tokenizer is not None:
|
21 |
-
|
22 |
-
|
23 |
|
24 |
gc.collect() # Force garbage collection for CPU memory
|
25 |
|
@@ -91,7 +91,9 @@ def show_dashboard():
|
|
91 |
- Training Source: [GitHub @ Tachygraphy Micro-text Analysis & Normalization](https://github.com/ArchismanKarmakar/Tachygraphy-Microtext-Analysis-And-Normalization)
|
92 |
- Kaggle Collections: [Kaggle @ Tachygraphy Micro-text Analysis & Normalization](https://www.kaggle.com/datasets/archismancoder/dataset-tachygraphy/data?select=Tachygraphy_MicroText-AIO-V3.xlsx)
|
93 |
- Hugging Face Org: [Hugging Face @ Tachygraphy Micro-text Analysis & Normalization](https://huggingface.co/tachygraphy-microtrext-norm-org)
|
94 |
-
- Deployment: [
|
|
|
|
|
95 |
""")
|
96 |
|
97 |
create_footer()
|
|
|
11 |
|
12 |
def free_memory():
|
13 |
# """Free up CPU & GPU memory before loading a new model."""
|
14 |
+
# global current_model, current_tokenizer
|
15 |
|
16 |
+
# if current_model is not None:
|
17 |
+
# del current_model # Delete the existing model
|
18 |
+
# current_model = None # Reset reference
|
19 |
|
20 |
+
# if current_tokenizer is not None:
|
21 |
+
# del current_tokenizer # Delete the tokenizer
|
22 |
+
# current_tokenizer = None
|
23 |
|
24 |
gc.collect() # Force garbage collection for CPU memory
|
25 |
|
|
|
91 |
- Training Source: [GitHub @ Tachygraphy Micro-text Analysis & Normalization](https://github.com/ArchismanKarmakar/Tachygraphy-Microtext-Analysis-And-Normalization)
|
92 |
- Kaggle Collections: [Kaggle @ Tachygraphy Micro-text Analysis & Normalization](https://www.kaggle.com/datasets/archismancoder/dataset-tachygraphy/data?select=Tachygraphy_MicroText-AIO-V3.xlsx)
|
93 |
- Hugging Face Org: [Hugging Face @ Tachygraphy Micro-text Analysis & Normalization](https://huggingface.co/tachygraphy-microtrext-norm-org)
|
94 |
+
- Deployment Source: [GitHub](https://github.com/ArchismanKarmakar/Tachygraphy-Microtext-Analysis-And-Normalization-Deployment-Source-HuggingFace_Streamlit_JPX14032025)
|
95 |
+
- Streamlit Deployemnt: [Streamlit](https://tachygraphy-microtext.streamlit.app/)
|
96 |
+
- Hugging Face Space Deployment: [Hugging Face Space](https://huggingface.co/spaces/tachygraphy-microtrext-norm-org/Tachygraphy-Microtext-Analysis-and-Normalization-ArchismanCoder)
|
97 |
""")
|
98 |
|
99 |
create_footer()
|
emotionMoodtag_analysis/__init__.py
ADDED
File without changes
|
emotionMoodtag_analysis/config/stage2_models.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"1": {
|
3 |
+
"name": "DeBERTa v3 Base for Sequence Classification",
|
4 |
+
"type": "hf_automodel_finetuned_dbt3",
|
5 |
+
"module_path": "hmv_cfg_base_stage2.model1",
|
6 |
+
"hf_location": "tachygraphy-microtrext-norm-org/DeBERTa-v3-seqClassfication-LV2-EmotionMoodtags-Batch8",
|
7 |
+
"tokenizer_class": "DebertaV2Tokenizer",
|
8 |
+
"model_class": "DebertaV2ForSequenceClassification",
|
9 |
+
"problem_type": "regression",
|
10 |
+
"base_model": "microsoft/deberta-v3-base",
|
11 |
+
"base_model_class": "DebertaV2ForSequenceClassification",
|
12 |
+
"num_labels": 7,
|
13 |
+
"device": "cpu",
|
14 |
+
"load_function": "load_model",
|
15 |
+
"predict_function": "predict"
|
16 |
+
},
|
17 |
+
"2": {
|
18 |
+
"name": "DeBERTa v3 Base Custom Model with minimal Regularized Loss",
|
19 |
+
"type": "db3_base_custom",
|
20 |
+
"module_path": "hmv_cfg_base_stage2.model2",
|
21 |
+
"hf_location": "tachygraphy-microtrext-norm-org/DeBERTa-v3-Base-Cust-LV2-EmotionMoodtags-minRegLoss",
|
22 |
+
"tokenizer_class": "DebertaV2Tokenizer",
|
23 |
+
"model_class": "EmotionModel",
|
24 |
+
"problem_type": "regression",
|
25 |
+
"base_model": "microsoft/deberta-v3-base",
|
26 |
+
"base_model_class": "DebertaV2Model",
|
27 |
+
"num_labels": 7,
|
28 |
+
"device": "cpu",
|
29 |
+
"load_function": "load_model",
|
30 |
+
"predict_function": "predict"
|
31 |
+
}
|
32 |
+
}
|
emotionMoodtag_analysis/emotion_analysis_main.py
ADDED
@@ -0,0 +1,317 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
|
4 |
+
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), )))
|
5 |
+
|
6 |
+
from imports import *
|
7 |
+
import importlib.util
|
8 |
+
import os
|
9 |
+
import sys
|
10 |
+
import joblib
|
11 |
+
import time
|
12 |
+
import torch
|
13 |
+
# from transformers.utils import move_cache_to_trash
|
14 |
+
# from huggingface_hub import delete_cache
|
15 |
+
from transformers.utils.hub import TRANSFORMERS_CACHE
|
16 |
+
import shutil
|
17 |
+
|
18 |
+
|
19 |
+
# from hmv_cfg_base_stage1.model1 import load_model as load_model1
|
20 |
+
# from hmv_cfg_base_stage1.model1 import predict as predict1
|
21 |
+
|
22 |
+
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
|
23 |
+
CONFIG_STAGE2 = os.path.join(BASE_DIR, "config", "stage2_models.json")
|
24 |
+
LOADERS_STAGE2 = os.path.join(BASE_DIR, "hmv-cfg-base-stage2")
|
25 |
+
|
26 |
+
|
27 |
+
EMOTION_MOODTAG_LABELS = [
|
28 |
+
"anger", "disgust", "fear", "joy", "neutral",
|
29 |
+
"sadness", "surprise"
|
30 |
+
]
|
31 |
+
|
32 |
+
current_model = None
|
33 |
+
current_tokenizer = None
|
34 |
+
|
35 |
+
|
36 |
+
# Enabling Resource caching
|
37 |
+
|
38 |
+
|
39 |
+
# @st.cache_resource
|
40 |
+
def load_model_config():
|
41 |
+
with open(CONFIG_STAGE2, "r") as f:
|
42 |
+
model_data = json.load(f)
|
43 |
+
|
44 |
+
# Extract names for dropdown
|
45 |
+
model_options = {v["name"]: v for v in model_data.values()}
|
46 |
+
return model_data, model_options
|
47 |
+
|
48 |
+
|
49 |
+
MODEL_DATA, MODEL_OPTIONS = load_model_config()
|
50 |
+
|
51 |
+
|
52 |
+
# β
Dynamically Import Model Functions
|
53 |
+
def import_from_module(module_name, function_name):
|
54 |
+
try:
|
55 |
+
module = importlib.import_module(module_name)
|
56 |
+
return getattr(module, function_name)
|
57 |
+
except (ModuleNotFoundError, AttributeError) as e:
|
58 |
+
st.error(f"β Import Error: {e}")
|
59 |
+
return None
|
60 |
+
|
61 |
+
|
62 |
+
def free_memory():
|
63 |
+
# """Free up CPU & GPU memory before loading a new model."""
|
64 |
+
global current_model, current_tokenizer
|
65 |
+
|
66 |
+
if current_model is not None:
|
67 |
+
del current_model # Delete the existing model
|
68 |
+
current_model = None # Reset reference
|
69 |
+
|
70 |
+
if current_tokenizer is not None:
|
71 |
+
del current_tokenizer # Delete the tokenizer
|
72 |
+
current_tokenizer = None
|
73 |
+
|
74 |
+
gc.collect() # Force garbage collection for CPU memory
|
75 |
+
|
76 |
+
if torch.cuda.is_available():
|
77 |
+
torch.cuda.empty_cache() # Free GPU memory
|
78 |
+
torch.cuda.ipc_collect() # Clean up PyTorch GPU cache
|
79 |
+
|
80 |
+
# If running on CPU, reclaim memory using OS-level commands
|
81 |
+
try:
|
82 |
+
if torch.cuda.is_available() is False:
|
83 |
+
psutil.virtual_memory() # Refresh memory stats
|
84 |
+
except Exception as e:
|
85 |
+
print(f"Memory cleanup error: {e}")
|
86 |
+
|
87 |
+
# Delete cached Hugging Face models
|
88 |
+
try:
|
89 |
+
cache_dir = TRANSFORMERS_CACHE
|
90 |
+
if os.path.exists(cache_dir):
|
91 |
+
shutil.rmtree(cache_dir)
|
92 |
+
print("Cache cleared!")
|
93 |
+
except Exception as e:
|
94 |
+
print(f"β Cache cleanup error: {e}")
|
95 |
+
|
96 |
+
|
97 |
+
|
98 |
+
def load_selected_model(model_name):
|
99 |
+
global current_model, current_tokenizer
|
100 |
+
|
101 |
+
# st.cache_resource.clear()
|
102 |
+
|
103 |
+
# free_memory()
|
104 |
+
|
105 |
+
# st.write("DEBUG: Available Models:", MODEL_OPTIONS.keys()) # β
See available models
|
106 |
+
# st.write("DEBUG: Selected Model:", MODEL_OPTIONS[model_name]) # β
Check selected model
|
107 |
+
# st.write("DEBUG: Model Name:", model_name) # β
Check selected model
|
108 |
+
|
109 |
+
if model_name not in MODEL_OPTIONS:
|
110 |
+
st.error(f"β οΈ Model '{model_name}' not found in config!")
|
111 |
+
return None, None, None
|
112 |
+
|
113 |
+
model_info = MODEL_OPTIONS[model_name]
|
114 |
+
hf_location = model_info["hf_location"]
|
115 |
+
|
116 |
+
model_module = model_info["module_path"]
|
117 |
+
load_function = model_info["load_function"]
|
118 |
+
predict_function = model_info["predict_function"]
|
119 |
+
|
120 |
+
load_model_func = import_from_module(model_module, load_function)
|
121 |
+
predict_func = import_from_module(model_module, predict_function)
|
122 |
+
|
123 |
+
if load_model_func is None or predict_func is None:
|
124 |
+
st.error("β Model functions could not be loaded!")
|
125 |
+
return None, None, None
|
126 |
+
|
127 |
+
model, tokenizer = load_model_func()
|
128 |
+
|
129 |
+
current_model, current_tokenizer = model, tokenizer
|
130 |
+
return model, tokenizer, predict_func
|
131 |
+
|
132 |
+
|
133 |
+
def disable_ui():
|
134 |
+
st.components.v1.html(
|
135 |
+
"""
|
136 |
+
<style>
|
137 |
+
#ui-disable-overlay {
|
138 |
+
position: fixed;
|
139 |
+
top: 0;
|
140 |
+
left: 0;
|
141 |
+
width: 100vw;
|
142 |
+
height: 100vh;
|
143 |
+
background-color: rgba(200, 200, 200, 0.5);
|
144 |
+
z-index: 9999;
|
145 |
+
}
|
146 |
+
</style>
|
147 |
+
<div id="ui-disable-overlay"></div>
|
148 |
+
""",
|
149 |
+
height=0,
|
150 |
+
scrolling=False
|
151 |
+
)
|
152 |
+
|
153 |
+
|
154 |
+
def enable_ui():
|
155 |
+
st.components.v1.html(
|
156 |
+
"""
|
157 |
+
<script>
|
158 |
+
var overlay = document.getElementById("ui-disable-overlay");
|
159 |
+
if (overlay) {
|
160 |
+
overlay.parentNode.removeChild(overlay);
|
161 |
+
}
|
162 |
+
</script>
|
163 |
+
""",
|
164 |
+
height=0,
|
165 |
+
scrolling=False
|
166 |
+
)
|
167 |
+
|
168 |
+
# Function to increment progress dynamically
|
169 |
+
def update_progress(progress_bar, start, end, delay=0.1):
|
170 |
+
for i in range(start, end + 1, 5): # Increment in steps of 5%
|
171 |
+
progress_bar.progress(i)
|
172 |
+
time.sleep(delay) # Simulate processing time
|
173 |
+
# st.experimental_rerun() # Refresh the page
|
174 |
+
|
175 |
+
|
176 |
+
# Function to update session state when model changes
|
177 |
+
def on_model_change():
|
178 |
+
st.session_state.model_changed = True # Mark model as changed
|
179 |
+
|
180 |
+
|
181 |
+
# Function to update session state when text changes
|
182 |
+
|
183 |
+
|
184 |
+
def on_text_change():
|
185 |
+
st.session_state.text_changed = True # Mark text as changed
|
186 |
+
|
187 |
+
|
188 |
+
# Initialize session state variables
|
189 |
+
if "selected_model" not in st.session_state:
|
190 |
+
st.session_state.selected_model = list(MODEL_OPTIONS.keys())[
|
191 |
+
0] # Default model
|
192 |
+
if "user_input" not in st.session_state:
|
193 |
+
st.session_state.user_input = ""
|
194 |
+
if "last_processed_input" not in st.session_state:
|
195 |
+
st.session_state.last_processed_input = ""
|
196 |
+
if "model_changed" not in st.session_state:
|
197 |
+
st.session_state.model_changed = False
|
198 |
+
if "text_changed" not in st.session_state:
|
199 |
+
st.session_state.text_changed = False
|
200 |
+
if "disabled" not in st.session_state:
|
201 |
+
st.session_state.disabled = False
|
202 |
+
|
203 |
+
# Enabling Resource caching
|
204 |
+
def show_emotion_analysis():
|
205 |
+
st.title("Stage 2: Emotion Mood-tag Analysis")
|
206 |
+
st.write("This section handles emotion mood-tag analysis.")
|
207 |
+
|
208 |
+
# Model selection with change detection
|
209 |
+
selected_model = st.selectbox(
|
210 |
+
"Choose a model:", list(MODEL_OPTIONS.keys()), key="selected_model", on_change=on_model_change
|
211 |
+
)
|
212 |
+
|
213 |
+
# Text input with change detection
|
214 |
+
user_input = st.text_input(
|
215 |
+
"Enter text for emotions mood-tag analysis:", key="user_input", on_change=on_text_change
|
216 |
+
)
|
217 |
+
user_input_copy = user_input
|
218 |
+
|
219 |
+
# Only run inference if:
|
220 |
+
# 1. The text is NOT empty
|
221 |
+
# 2. The text has changed OR the model has changed
|
222 |
+
if user_input.strip() and (st.session_state.text_changed or st.session_state.model_changed):
|
223 |
+
|
224 |
+
# disable_ui()
|
225 |
+
|
226 |
+
|
227 |
+
# Reset session state flags
|
228 |
+
st.session_state.last_processed_input = user_input
|
229 |
+
st.session_state.model_changed = False
|
230 |
+
st.session_state.text_changed = False # Store selected model
|
231 |
+
|
232 |
+
# ADD A DYNAMIC PROGRESS BAR
|
233 |
+
progress_bar = st.progress(0)
|
234 |
+
update_progress(progress_bar, 0, 10)
|
235 |
+
# status_text = st.empty()
|
236 |
+
|
237 |
+
# update_progress(0, 10)
|
238 |
+
# status_text.text("Loading model...")
|
239 |
+
|
240 |
+
# Make prediction
|
241 |
+
|
242 |
+
# model, tokenizer = load_model()
|
243 |
+
# model, tokenizer = load_selected_model(selected_model)
|
244 |
+
with st.spinner("Please wait..."):
|
245 |
+
model, tokenizer, predict_func = load_selected_model(selected_model)
|
246 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
247 |
+
|
248 |
+
if model is None:
|
249 |
+
st.error(
|
250 |
+
"β οΈ Error: Model failed to load! Check model selection or configuration.")
|
251 |
+
st.stop()
|
252 |
+
|
253 |
+
# model.to(device)
|
254 |
+
if hasattr(model, "to"):
|
255 |
+
model.to(device)
|
256 |
+
|
257 |
+
# predictions = predict(user_input, model, tokenizer, device)
|
258 |
+
|
259 |
+
predictions = predict_func(user_input, model, tokenizer, device)
|
260 |
+
print(predictions)
|
261 |
+
|
262 |
+
# Squeeze predictions to remove extra dimensions
|
263 |
+
predictions_array = predictions.squeeze()
|
264 |
+
|
265 |
+
# Convert to binary predictions (argmax)
|
266 |
+
binary_predictions = np.zeros_like(predictions_array)
|
267 |
+
max_indices = np.argmax(predictions_array)
|
268 |
+
binary_predictions[max_indices] = 1
|
269 |
+
|
270 |
+
# Update progress bar for prediction and model loading
|
271 |
+
update_progress(progress_bar, 10, 100)
|
272 |
+
|
273 |
+
# Display raw predictions
|
274 |
+
st.write(f"**Predicted Emotion Scores:** {predictions_array}")
|
275 |
+
|
276 |
+
# enable_ui()
|
277 |
+
##
|
278 |
+
# Display binary classification result
|
279 |
+
# st.write(f"**Predicted Sentiment:**")
|
280 |
+
# st.write(f"**NEGATIVE:** {binary_predictions[0]}, **NEUTRAL:** {binary_predictions[1]}, **POSITIVE:** {binary_predictions[2]}")
|
281 |
+
# st.write(f"**NEUTRAL:** {binary_predictions[1]}")
|
282 |
+
# st.write(f"**POSITIVE:** {binary_predictions[2]}")
|
283 |
+
|
284 |
+
# 1οΈβ£ **Polar Plot (Plotly)**
|
285 |
+
emotion_moodtags = predictions_array.tolist()
|
286 |
+
fig_polar = px.line_polar(
|
287 |
+
pd.DataFrame(dict(r=emotion_moodtags,
|
288 |
+
theta=EMOTION_MOODTAG_LABELS)),
|
289 |
+
r='r', theta='theta', line_close=True
|
290 |
+
)
|
291 |
+
st.plotly_chart(fig_polar)
|
292 |
+
|
293 |
+
# 2οΈβ£ **Normalized Horizontal Bar Chart (Matplotlib)**
|
294 |
+
normalized_predictions = predictions_array / predictions_array.sum()
|
295 |
+
|
296 |
+
fig, ax = plt.subplots(figsize=(8, 2))
|
297 |
+
left = 0
|
298 |
+
for i in range(len(normalized_predictions)):
|
299 |
+
ax.barh(0, normalized_predictions[i], color=plt.cm.tab10(
|
300 |
+
i), left=left, label=EMOTION_MOODTAG_LABELS[i])
|
301 |
+
left += normalized_predictions[i]
|
302 |
+
|
303 |
+
# Configure the chart
|
304 |
+
ax.set_xlim(0, 1)
|
305 |
+
ax.set_yticks([])
|
306 |
+
ax.set_xticks(np.arange(0, 1.1, 0.1))
|
307 |
+
ax.legend(loc='upper center', bbox_to_anchor=(
|
308 |
+
0.5, -0.15), ncol=len(EMOTION_MOODTAG_LABELS))
|
309 |
+
plt.title("Emotion Mood-tags Prediction Distribution")
|
310 |
+
|
311 |
+
# Display in Streamlit
|
312 |
+
st.pyplot(fig)
|
313 |
+
|
314 |
+
progress_bar.empty()
|
315 |
+
|
316 |
+
if __name__ == "__main__":
|
317 |
+
show_emotion_analysis()
|
emotionMoodtag_analysis/hmv_cfg_base_stage2/__init__.py
ADDED
File without changes
|
{sentiment_analysis/hmv_cfg_base_stage1 β emotionMoodtag_analysis/hmv_cfg_base_stage2}/imports.py
RENAMED
@@ -1,25 +1,25 @@
|
|
1 |
-
import os
|
2 |
-
import sys
|
3 |
-
|
4 |
-
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), )))
|
5 |
-
|
6 |
-
import streamlit as st
|
7 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModel, DebertaV2Tokenizer, DebertaV2ForSequenceClassification, DebertaV2Model
|
8 |
-
# import torch
|
9 |
-
import numpy as np
|
10 |
-
import matplotlib.pyplot as plt
|
11 |
-
import plotly.express as px
|
12 |
-
import pandas as pd
|
13 |
-
import json
|
14 |
-
import gc
|
15 |
-
import psutil
|
16 |
-
import importlib
|
17 |
-
import importlib.util
|
18 |
-
import asyncio
|
19 |
-
# import pytorch_lightning as pl
|
20 |
-
|
21 |
-
import safetensors
|
22 |
-
from safetensors import load_file, save_file
|
23 |
-
import json
|
24 |
-
import huggingface_hub
|
25 |
from huggingface_hub import hf_hub_download
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
|
4 |
+
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), )))
|
5 |
+
|
6 |
+
import streamlit as st
|
7 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModel, DebertaV2Tokenizer, DebertaV2ForSequenceClassification, DebertaV2Model
|
8 |
+
# import torch
|
9 |
+
import numpy as np
|
10 |
+
import matplotlib.pyplot as plt
|
11 |
+
import plotly.express as px
|
12 |
+
import pandas as pd
|
13 |
+
import json
|
14 |
+
import gc
|
15 |
+
import psutil
|
16 |
+
import importlib
|
17 |
+
import importlib.util
|
18 |
+
import asyncio
|
19 |
+
# import pytorch_lightning as pl
|
20 |
+
|
21 |
+
import safetensors
|
22 |
+
from safetensors import load_file, save_file
|
23 |
+
import json
|
24 |
+
import huggingface_hub
|
25 |
from huggingface_hub import hf_hub_download
|
emotionMoodtag_analysis/hmv_cfg_base_stage2/model1.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
|
4 |
+
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), )))
|
5 |
+
|
6 |
+
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
|
7 |
+
CONFIG_STAGE2 = os.path.join(BASE_DIR, "..", "config", "stage2_models.json")
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
from imports import *
|
12 |
+
import torch.nn.functional as F
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
+
MODEL_OPTIONS = {
|
18 |
+
"1": {
|
19 |
+
"name": "DeBERTa v3 Base for Sequence Classification",
|
20 |
+
"type": "hf_automodel_finetuned_dbt3",
|
21 |
+
"module_path": "hmv_cfg_base_stage2.model1",
|
22 |
+
"hf_location": "tachygraphy-microtrext-norm-org/DeBERTa-v3-seqClassfication-LV2-EmotionMoodtags-Batch8",
|
23 |
+
"tokenizer_class": "DebertaV2Tokenizer",
|
24 |
+
"model_class": "DebertaV2ForSequenceClassification",
|
25 |
+
"problem_type": "regression",
|
26 |
+
"base_model": "microsoft/deberta-v3-base",
|
27 |
+
"base_model_class": "DebertaV2ForSequenceClassification",
|
28 |
+
"num_labels": 7,
|
29 |
+
"device": "cpu",
|
30 |
+
"load_function": "load_model",
|
31 |
+
"predict_function": "predict"
|
32 |
+
}
|
33 |
+
}
|
34 |
+
|
35 |
+
|
36 |
+
model_key = "1"
|
37 |
+
model_info = MODEL_OPTIONS[model_key]
|
38 |
+
hf_location = model_info["hf_location"]
|
39 |
+
|
40 |
+
tokenizer_class = globals()[model_info["tokenizer_class"]]
|
41 |
+
model_class = globals()[model_info["model_class"]]
|
42 |
+
|
43 |
+
|
44 |
+
@st.cache_resource
|
45 |
+
def load_model():
|
46 |
+
tokenizer = tokenizer_class.from_pretrained(hf_location)
|
47 |
+
print("Loading model 1")
|
48 |
+
model = model_class.from_pretrained(hf_location,
|
49 |
+
problem_type=model_info["problem_type"],
|
50 |
+
num_labels=model_info["num_labels"]
|
51 |
+
)
|
52 |
+
print("Model 1 loaded")
|
53 |
+
|
54 |
+
return model, tokenizer
|
55 |
+
|
56 |
+
|
57 |
+
def predict(text, model, tokenizer, device, max_len=128):
|
58 |
+
# Tokenize and pad the input text
|
59 |
+
inputs = tokenizer(
|
60 |
+
text,
|
61 |
+
add_special_tokens=True,
|
62 |
+
padding=True,
|
63 |
+
truncation=False,
|
64 |
+
return_tensors="pt",
|
65 |
+
return_token_type_ids=False,
|
66 |
+
).to(device) # Move input tensors to the correct device
|
67 |
+
|
68 |
+
with torch.no_grad():
|
69 |
+
outputs = model(**inputs)
|
70 |
+
|
71 |
+
# probabilities = outputs.logits.cpu().numpy()
|
72 |
+
|
73 |
+
# probabilities = torch.relu(outputs.logits)
|
74 |
+
# probabilities = torch.clamp(torch.tensor(probabilities), min=0.00000, max=1.00000).cpu().numpy()
|
75 |
+
# probabilities /= probabilities.sum()
|
76 |
+
# probabilities = probabilities.cpu().numpy()
|
77 |
+
|
78 |
+
# predictions = outputs.logits.cpu().numpy()
|
79 |
+
|
80 |
+
relu_logits = F.relu(outputs.logits)
|
81 |
+
clipped_logits = torch.clamp(relu_logits, max=1.00000000, min=0.00000000)
|
82 |
+
predictions = clipped_logits.cpu().numpy()
|
83 |
+
|
84 |
+
return predictions
|
85 |
+
|
86 |
+
|
87 |
+
if __name__ == "__main__":
|
88 |
+
model, tokenizer = load_model()
|
89 |
+
print("Model and tokenizer loaded successfully.")
|
emotionMoodtag_analysis/hmv_cfg_base_stage2/model2.py
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from safetensors.torch import save_file, safe_open
|
2 |
+
from huggingface_hub import hf_hub_download
|
3 |
+
import json
|
4 |
+
import safetensors
|
5 |
+
from transformers import DebertaV2Model, DebertaV2Tokenizer
|
6 |
+
import torch.nn as nn
|
7 |
+
import torch.nn.functional as F
|
8 |
+
import torch
|
9 |
+
import joblib
|
10 |
+
import importlib.util
|
11 |
+
from imports import *
|
12 |
+
import os
|
13 |
+
import sys
|
14 |
+
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), )))
|
15 |
+
|
16 |
+
|
17 |
+
# from safetensors import load_file, save_file
|
18 |
+
|
19 |
+
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
|
20 |
+
CONFIG_STAGE2 = os.path.join(BASE_DIR, "..", "config", "stage2_models.json")
|
21 |
+
|
22 |
+
|
23 |
+
MODEL_OPTIONS = {
|
24 |
+
"2": {
|
25 |
+
"name": "DeBERTa v3 Base Custom Model with minimal Regularized Loss",
|
26 |
+
"type": "db3_base_custom",
|
27 |
+
"module_path": "hmv_cfg_base_stage2.model2",
|
28 |
+
"hf_location": "tachygraphy-microtrext-norm-org/DeBERTa-v3-Base-Cust-LV2-EmotionMoodtags-minRegLoss",
|
29 |
+
"tokenizer_class": "DebertaV2Tokenizer",
|
30 |
+
"model_class": "EmotionModel",
|
31 |
+
"problem_type": "regression",
|
32 |
+
"base_model": "microsoft/deberta-v3-base",
|
33 |
+
"base_model_class": "DebertaV2Model",
|
34 |
+
"num_labels": 7,
|
35 |
+
"device": "cpu",
|
36 |
+
"load_function": "load_model",
|
37 |
+
"predict_function": "predict"
|
38 |
+
}
|
39 |
+
}
|
40 |
+
|
41 |
+
|
42 |
+
class EmotionModel(nn.Module):
|
43 |
+
def __init__(self, roberta_model, n_classes = 7, dropout_rate = 0.2):
|
44 |
+
super(EmotionModel, self).__init__()
|
45 |
+
|
46 |
+
self.roberta = roberta_model
|
47 |
+
self.drop = nn.Dropout(p=dropout_rate)
|
48 |
+
self.fc1 = nn.Linear(self.roberta.config.hidden_size, 512)
|
49 |
+
self.relu = nn.ReLU()
|
50 |
+
self.fc2 = nn.Linear(512, 256)
|
51 |
+
self.out = nn.Linear(256, n_classes)
|
52 |
+
|
53 |
+
def forward(self, input_ids, attention_mask):
|
54 |
+
output = self.roberta(input_ids=input_ids, attention_mask=attention_mask)
|
55 |
+
# hidden_states = output.last_hidden_state
|
56 |
+
|
57 |
+
# Extract the [CLS] token representation (first token in the sequence)
|
58 |
+
cls_token_state = output.last_hidden_state[:, 0, :]
|
59 |
+
output = self.drop(cls_token_state)
|
60 |
+
output = self.relu(self.fc1(output))
|
61 |
+
output = self.drop(output)
|
62 |
+
output = self.relu(self.fc2(output))
|
63 |
+
# output = self.drop(output)
|
64 |
+
return self.out(output)
|
65 |
+
|
66 |
+
|
67 |
+
def save_pretrained(self, save_directory):
|
68 |
+
os.makedirs(save_directory, exist_ok=True)
|
69 |
+
|
70 |
+
model_weights = self.state_dict()
|
71 |
+
save_file(model_weights, os.path.join(save_directory, "model.safetensors"))
|
72 |
+
|
73 |
+
config = {
|
74 |
+
"hidden_size": self.roberta.config.hidden_size,
|
75 |
+
"num_labels": self.out.out_features,
|
76 |
+
"dropout_rate": self.drop.p,
|
77 |
+
"roberta_model": self.roberta.name_or_path, # β
Save model name
|
78 |
+
}
|
79 |
+
with open(os.path.join(save_directory, "config.json"), "w") as f:
|
80 |
+
json.dump(config, f)
|
81 |
+
|
82 |
+
print(f"Model saved in {save_directory}")
|
83 |
+
|
84 |
+
|
85 |
+
@classmethod
|
86 |
+
@st.cache_resource
|
87 |
+
def load_pretrained(cls, model_path_or_repo):
|
88 |
+
# """Loads and caches the model (RoBERTa + EmotionModel) only when called."""
|
89 |
+
print(f"Loading model from {model_path_or_repo}...")
|
90 |
+
|
91 |
+
model_config_path = hf_hub_download(model_path_or_repo, "config.json")
|
92 |
+
model_weights_path = hf_hub_download(model_path_or_repo, "model.safetensors")
|
93 |
+
|
94 |
+
with open(model_config_path, "r") as f:
|
95 |
+
config = json.load(f)
|
96 |
+
|
97 |
+
print(f"Loading RoBERTa model: {config['roberta_model']}...")
|
98 |
+
roberta_model = DebertaV2Model.from_pretrained(
|
99 |
+
config["roberta_model"],
|
100 |
+
)
|
101 |
+
|
102 |
+
model = cls(
|
103 |
+
roberta_model, n_classes=config["num_labels"], dropout_rate=config["dropout_rate"]
|
104 |
+
)
|
105 |
+
|
106 |
+
with safe_open(model_weights_path, framework="pt", device="cpu") as f:
|
107 |
+
model_weights = {key: f.get_tensor(key) for key in f.keys()}
|
108 |
+
model.load_state_dict(model_weights)
|
109 |
+
|
110 |
+
print(f"Model loaded from {model_path_or_repo}")
|
111 |
+
return model
|
112 |
+
|
113 |
+
|
114 |
+
model_key = "2"
|
115 |
+
model_info = MODEL_OPTIONS[model_key]
|
116 |
+
hf_location = model_info["hf_location"]
|
117 |
+
base_model = model_info["base_model"]
|
118 |
+
|
119 |
+
tokenizer_class = globals()[model_info["tokenizer_class"]]
|
120 |
+
model_class = globals()[model_info["model_class"]]
|
121 |
+
|
122 |
+
|
123 |
+
@st.cache_resource
|
124 |
+
def load_model():
|
125 |
+
tokenizer = tokenizer_class.from_pretrained(hf_location)
|
126 |
+
print("Loading model 2")
|
127 |
+
model = EmotionModel.load_pretrained(hf_location)
|
128 |
+
print("Model 2 loaded")
|
129 |
+
# model.eval()
|
130 |
+
|
131 |
+
return model, tokenizer
|
132 |
+
|
133 |
+
|
134 |
+
def predict(text, model, tokenizer, device, max_len=128):
|
135 |
+
# model.eval() # Set model to evaluation mode
|
136 |
+
|
137 |
+
# Tokenize and pad the input text
|
138 |
+
inputs = tokenizer(
|
139 |
+
text,
|
140 |
+
add_special_tokens=True,
|
141 |
+
padding=True,
|
142 |
+
truncation=False,
|
143 |
+
return_tensors="pt",
|
144 |
+
return_token_type_ids=False,
|
145 |
+
).to(device) # Move input tensors to the correct device
|
146 |
+
|
147 |
+
with torch.no_grad():
|
148 |
+
outputs = model(**inputs)
|
149 |
+
|
150 |
+
# Apply sigmoid activation (for BCEWithLogitsLoss)
|
151 |
+
# probabilities = torch.sigmoid(outputs).cpu().numpy()
|
152 |
+
# probabilities = outputs.cpu().numpy()
|
153 |
+
|
154 |
+
relu_logits = F.relu(outputs)
|
155 |
+
clipped_logits = torch.clamp(relu_logits, max=1.00000000, min=0.00000000)
|
156 |
+
probabilities = clipped_logits.cpu().numpy()
|
157 |
+
|
158 |
+
return probabilities
|
159 |
+
|
160 |
+
|
161 |
+
if __name__ == "__main__":
|
162 |
+
model, tokenizer = load_model()
|
163 |
+
print("Model and tokenizer loaded successfully.")
|
emotion_analysis.py
DELETED
@@ -1,9 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
|
3 |
-
def show_emotion_analysis():
|
4 |
-
st.title("Stage 2: Emotion Mood-tag Analysis")
|
5 |
-
st.write("This section will handle emotion detection.")
|
6 |
-
# Add your emotion detection code here
|
7 |
-
|
8 |
-
if __name__ == "__main__":
|
9 |
-
show_emotion_analysis()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
poetry.lock
CHANGED
@@ -2352,14 +2352,14 @@ files = [
|
|
2352 |
|
2353 |
[[package]]
|
2354 |
name = "lightning-utilities"
|
2355 |
-
version = "0.14.
|
2356 |
description = "Lightning toolbox for across the our ecosystem."
|
2357 |
optional = false
|
2358 |
python-versions = ">=3.9"
|
2359 |
groups = ["main"]
|
2360 |
files = [
|
2361 |
-
{file = "lightning_utilities-0.14.
|
2362 |
-
{file = "lightning_utilities-0.14.
|
2363 |
]
|
2364 |
|
2365 |
[package.dependencies]
|
@@ -4146,23 +4146,23 @@ files = [
|
|
4146 |
|
4147 |
[[package]]
|
4148 |
name = "protobuf"
|
4149 |
-
version = "5.29.
|
4150 |
description = ""
|
4151 |
optional = false
|
4152 |
python-versions = ">=3.8"
|
4153 |
groups = ["main"]
|
4154 |
files = [
|
4155 |
-
{file = "protobuf-5.29.
|
4156 |
-
{file = "protobuf-5.29.
|
4157 |
-
{file = "protobuf-5.29.
|
4158 |
-
{file = "protobuf-5.29.
|
4159 |
-
{file = "protobuf-5.29.
|
4160 |
-
{file = "protobuf-5.29.
|
4161 |
-
{file = "protobuf-5.29.
|
4162 |
-
{file = "protobuf-5.29.
|
4163 |
-
{file = "protobuf-5.29.
|
4164 |
-
{file = "protobuf-5.29.
|
4165 |
-
{file = "protobuf-5.29.
|
4166 |
]
|
4167 |
|
4168 |
[[package]]
|
|
|
2352 |
|
2353 |
[[package]]
|
2354 |
name = "lightning-utilities"
|
2355 |
+
version = "0.14.2"
|
2356 |
description = "Lightning toolbox for across the our ecosystem."
|
2357 |
optional = false
|
2358 |
python-versions = ">=3.9"
|
2359 |
groups = ["main"]
|
2360 |
files = [
|
2361 |
+
{file = "lightning_utilities-0.14.2-py3-none-any.whl", hash = "sha256:da791fcaa731f651ec76a1a3b12994ed05af4d6841f2e78760233552709ef05d"},
|
2362 |
+
{file = "lightning_utilities-0.14.2.tar.gz", hash = "sha256:0466a4f1bb9dff1c7190d4c7a32d1a8a1109f94fb816931efe8fb8b12bb0ab8d"},
|
2363 |
]
|
2364 |
|
2365 |
[package.dependencies]
|
|
|
4146 |
|
4147 |
[[package]]
|
4148 |
name = "protobuf"
|
4149 |
+
version = "5.29.4"
|
4150 |
description = ""
|
4151 |
optional = false
|
4152 |
python-versions = ">=3.8"
|
4153 |
groups = ["main"]
|
4154 |
files = [
|
4155 |
+
{file = "protobuf-5.29.4-cp310-abi3-win32.whl", hash = "sha256:13eb236f8eb9ec34e63fc8b1d6efd2777d062fa6aaa68268fb67cf77f6839ad7"},
|
4156 |
+
{file = "protobuf-5.29.4-cp310-abi3-win_amd64.whl", hash = "sha256:bcefcdf3976233f8a502d265eb65ea740c989bacc6c30a58290ed0e519eb4b8d"},
|
4157 |
+
{file = "protobuf-5.29.4-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:307ecba1d852ec237e9ba668e087326a67564ef83e45a0189a772ede9e854dd0"},
|
4158 |
+
{file = "protobuf-5.29.4-cp38-abi3-manylinux2014_aarch64.whl", hash = "sha256:aec4962f9ea93c431d5714ed1be1c93f13e1a8618e70035ba2b0564d9e633f2e"},
|
4159 |
+
{file = "protobuf-5.29.4-cp38-abi3-manylinux2014_x86_64.whl", hash = "sha256:d7d3f7d1d5a66ed4942d4fefb12ac4b14a29028b209d4bfb25c68ae172059922"},
|
4160 |
+
{file = "protobuf-5.29.4-cp38-cp38-win32.whl", hash = "sha256:1832f0515b62d12d8e6ffc078d7e9eb06969aa6dc13c13e1036e39d73bebc2de"},
|
4161 |
+
{file = "protobuf-5.29.4-cp38-cp38-win_amd64.whl", hash = "sha256:476cb7b14914c780605a8cf62e38c2a85f8caff2e28a6a0bad827ec7d6c85d68"},
|
4162 |
+
{file = "protobuf-5.29.4-cp39-cp39-win32.whl", hash = "sha256:fd32223020cb25a2cc100366f1dedc904e2d71d9322403224cdde5fdced0dabe"},
|
4163 |
+
{file = "protobuf-5.29.4-cp39-cp39-win_amd64.whl", hash = "sha256:678974e1e3a9b975b8bc2447fca458db5f93a2fb6b0c8db46b6675b5b5346812"},
|
4164 |
+
{file = "protobuf-5.29.4-py3-none-any.whl", hash = "sha256:3fde11b505e1597f71b875ef2fc52062b6a9740e5f7c8997ce878b6009145862"},
|
4165 |
+
{file = "protobuf-5.29.4.tar.gz", hash = "sha256:4f1dfcd7997b31ef8f53ec82781ff434a28bf71d9102ddde14d076adcfc78c99"},
|
4166 |
]
|
4167 |
|
4168 |
[[package]]
|
pyproject.toml
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
[project]
|
2 |
name = "tachygraphy-microtext-analysis-and-normalization"
|
3 |
-
version = "2025.03.
|
4 |
description = ""
|
5 |
authors = [
|
6 |
{ name = "Archisman Karmakar", email = "[email protected]" },
|
|
|
1 |
[project]
|
2 |
name = "tachygraphy-microtext-analysis-and-normalization"
|
3 |
+
version = "2025.03.20.post1"
|
4 |
description = ""
|
5 |
authors = [
|
6 |
{ name = "Archisman Karmakar", email = "[email protected]" },
|
pyprojectOLD.toml
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
[project]
|
2 |
name = "tachygraphy-microtext-analysis-and-normalization"
|
3 |
-
version = "2025.03.18.
|
|
|
4 |
# version = "2025.03.18.post3"
|
5 |
# version = "2025.03.18.post2"
|
6 |
# version = "2025.03.18.post1"
|
|
|
1 |
[project]
|
2 |
name = "tachygraphy-microtext-analysis-and-normalization"
|
3 |
+
version = "2025.03.18.post5"
|
4 |
+
# version = "2025.03.18.post4_3"
|
5 |
# version = "2025.03.18.post3"
|
6 |
# version = "2025.03.18.post2"
|
7 |
# version = "2025.03.18.post1"
|
requirements.txt
CHANGED
@@ -87,7 +87,7 @@ keras==3.9.0 ; python_version >= "3.12" and python_version < "4.0"
|
|
87 |
keyring==25.6.0 ; python_version >= "3.12" and python_version < "4.0"
|
88 |
kiwisolver==1.4.8 ; python_version >= "3.12" and python_version < "4.0"
|
89 |
libclang==18.1.1 ; python_version >= "3.12" and python_version < "4.0"
|
90 |
-
lightning-utilities==0.14.
|
91 |
locket==1.0.0 ; python_version >= "3.12" and python_version < "4.0"
|
92 |
lxml==5.3.1 ; python_version >= "3.12" and python_version < "4.0"
|
93 |
markdown-it-py==3.0.0 ; python_version >= "3.12" and python_version < "4.0"
|
@@ -145,7 +145,7 @@ portalocker==3.1.1 ; python_version >= "3.12" and python_version < "4.0"
|
|
145 |
prometheus-client==0.21.1 ; python_version >= "3.12" and python_version < "4.0"
|
146 |
prompt-toolkit==3.0.50 ; python_version >= "3.12" and python_version < "4.0"
|
147 |
propcache==0.3.0 ; python_version >= "3.12" and python_version < "4.0"
|
148 |
-
protobuf==5.29.
|
149 |
psutil==7.0.0 ; python_version >= "3.12" and python_version < "4.0"
|
150 |
ptyprocess==0.7.0 ; python_version >= "3.12" and python_version < "4.0" and sys_platform != "win32" and sys_platform != "emscripten"
|
151 |
pure-eval==0.2.3 ; python_version >= "3.12" and python_version < "4.0"
|
|
|
87 |
keyring==25.6.0 ; python_version >= "3.12" and python_version < "4.0"
|
88 |
kiwisolver==1.4.8 ; python_version >= "3.12" and python_version < "4.0"
|
89 |
libclang==18.1.1 ; python_version >= "3.12" and python_version < "4.0"
|
90 |
+
lightning-utilities==0.14.2 ; python_version >= "3.12" and python_version < "4.0"
|
91 |
locket==1.0.0 ; python_version >= "3.12" and python_version < "4.0"
|
92 |
lxml==5.3.1 ; python_version >= "3.12" and python_version < "4.0"
|
93 |
markdown-it-py==3.0.0 ; python_version >= "3.12" and python_version < "4.0"
|
|
|
145 |
prometheus-client==0.21.1 ; python_version >= "3.12" and python_version < "4.0"
|
146 |
prompt-toolkit==3.0.50 ; python_version >= "3.12" and python_version < "4.0"
|
147 |
propcache==0.3.0 ; python_version >= "3.12" and python_version < "4.0"
|
148 |
+
protobuf==5.29.4 ; python_version >= "3.12" and python_version < "4.0"
|
149 |
psutil==7.0.0 ; python_version >= "3.12" and python_version < "4.0"
|
150 |
ptyprocess==0.7.0 ; python_version >= "3.12" and python_version < "4.0" and sys_platform != "win32" and sys_platform != "emscripten"
|
151 |
pure-eval==0.2.3 ; python_version >= "3.12" and python_version < "4.0"
|
{sentiment_analysis β sentimentPolarity_analysis}/__init__.py
RENAMED
File without changes
|
{sentiment_analysis β sentimentPolarity_analysis}/config/stage1_models.json
RENAMED
@@ -1,62 +1,62 @@
|
|
1 |
-
{
|
2 |
-
"1": {
|
3 |
-
"name": "DeBERTa v3 Base for Sequence Classification",
|
4 |
-
"type": "hf_automodel_finetuned_dbt3",
|
5 |
-
"module_path": "hmv_cfg_base_stage1.model1",
|
6 |
-
"hf_location": "tachygraphy-microtrext-norm-org/DeBERTa-v3-seqClassfication-LV1-SentimentPolarities-Batch8",
|
7 |
-
"tokenizer_class": "DebertaV2Tokenizer",
|
8 |
-
"model_class": "DebertaV2ForSequenceClassification",
|
9 |
-
"problem_type": "multi_label_classification",
|
10 |
-
"base_model": "microsoft/deberta-v3-base",
|
11 |
-
"base_model_class": "DebertaV2ForSequenceClassification",
|
12 |
-
"num_labels": 3,
|
13 |
-
"device": "cpu",
|
14 |
-
"load_function": "load_model",
|
15 |
-
"predict_function": "predict"
|
16 |
-
},
|
17 |
-
"2": {
|
18 |
-
"name": "DeBERTa v3 Base Custom Model with minimal Regularized Loss",
|
19 |
-
"type": "db3_base_custom",
|
20 |
-
"module_path": "hmv_cfg_base_stage1.model2",
|
21 |
-
"hf_location": "tachygraphy-microtrext-norm-org/DeBERTa-v3-Base-Cust-LV1-SentimentPolarities-minRegLoss",
|
22 |
-
"tokenizer_class": "DebertaV2Tokenizer",
|
23 |
-
"model_class": "SentimentModel",
|
24 |
-
"problem_type": "multi_label_classification",
|
25 |
-
"base_model": "microsoft/deberta-v3-base",
|
26 |
-
"base_model_class": "DebertaV2Model",
|
27 |
-
"num_labels": 3,
|
28 |
-
"device": "cpu",
|
29 |
-
"load_function": "load_model",
|
30 |
-
"predict_function": "predict"
|
31 |
-
},
|
32 |
-
"3": {
|
33 |
-
"name": "BERT Base Uncased Custom Model",
|
34 |
-
"type": "bert_base_uncased_custom",
|
35 |
-
"module_path": "hmv_cfg_base_stage1.model3",
|
36 |
-
"hf_location": "https://huggingface.co/tachygraphy-microtrext-norm-org/BERT-LV1-SentimentPolarities/resolve/main/saved_weights.pt",
|
37 |
-
"tokenizer_class": "AutoTokenizer",
|
38 |
-
"model_class": "BERT_architecture",
|
39 |
-
"problem_type": "multi_label_classification",
|
40 |
-
"base_model": "bert-base-uncased",
|
41 |
-
"base_model_class": "AutoModel",
|
42 |
-
"num_labels": 3,
|
43 |
-
"device": "cpu",
|
44 |
-
"load_function": "load_model",
|
45 |
-
"predict_function": "predict"
|
46 |
-
},
|
47 |
-
"4": {
|
48 |
-
"name": "LSTM Custom Model",
|
49 |
-
"type": "lstm_uncased_custom",
|
50 |
-
"module_path": "hmv_cfg_base_stage1.model4",
|
51 |
-
"hf_location": "tachygraphy-microtrext-norm-org/LSTM-LV1-SentimentPolarities",
|
52 |
-
"tokenizer_class": "",
|
53 |
-
"model_class": "",
|
54 |
-
"problem_type": "multi_label_classification",
|
55 |
-
"base_model": "",
|
56 |
-
"base_model_class": "",
|
57 |
-
"num_labels": 3,
|
58 |
-
"device": "cpu",
|
59 |
-
"load_function": "load_model",
|
60 |
-
"predict_function": "predict"
|
61 |
-
}
|
62 |
-
}
|
|
|
1 |
+
{
|
2 |
+
"1": {
|
3 |
+
"name": "DeBERTa v3 Base for Sequence Classification",
|
4 |
+
"type": "hf_automodel_finetuned_dbt3",
|
5 |
+
"module_path": "hmv_cfg_base_stage1.model1",
|
6 |
+
"hf_location": "tachygraphy-microtrext-norm-org/DeBERTa-v3-seqClassfication-LV1-SentimentPolarities-Batch8",
|
7 |
+
"tokenizer_class": "DebertaV2Tokenizer",
|
8 |
+
"model_class": "DebertaV2ForSequenceClassification",
|
9 |
+
"problem_type": "multi_label_classification",
|
10 |
+
"base_model": "microsoft/deberta-v3-base",
|
11 |
+
"base_model_class": "DebertaV2ForSequenceClassification",
|
12 |
+
"num_labels": 3,
|
13 |
+
"device": "cpu",
|
14 |
+
"load_function": "load_model",
|
15 |
+
"predict_function": "predict"
|
16 |
+
},
|
17 |
+
"2": {
|
18 |
+
"name": "DeBERTa v3 Base Custom Model with minimal Regularized Loss",
|
19 |
+
"type": "db3_base_custom",
|
20 |
+
"module_path": "hmv_cfg_base_stage1.model2",
|
21 |
+
"hf_location": "tachygraphy-microtrext-norm-org/DeBERTa-v3-Base-Cust-LV1-SentimentPolarities-minRegLoss",
|
22 |
+
"tokenizer_class": "DebertaV2Tokenizer",
|
23 |
+
"model_class": "SentimentModel",
|
24 |
+
"problem_type": "multi_label_classification",
|
25 |
+
"base_model": "microsoft/deberta-v3-base",
|
26 |
+
"base_model_class": "DebertaV2Model",
|
27 |
+
"num_labels": 3,
|
28 |
+
"device": "cpu",
|
29 |
+
"load_function": "load_model",
|
30 |
+
"predict_function": "predict"
|
31 |
+
},
|
32 |
+
"3": {
|
33 |
+
"name": "BERT Base Uncased Custom Model",
|
34 |
+
"type": "bert_base_uncased_custom",
|
35 |
+
"module_path": "hmv_cfg_base_stage1.model3",
|
36 |
+
"hf_location": "https://huggingface.co/tachygraphy-microtrext-norm-org/BERT-LV1-SentimentPolarities/resolve/main/saved_weights.pt",
|
37 |
+
"tokenizer_class": "AutoTokenizer",
|
38 |
+
"model_class": "BERT_architecture",
|
39 |
+
"problem_type": "multi_label_classification",
|
40 |
+
"base_model": "bert-base-uncased",
|
41 |
+
"base_model_class": "AutoModel",
|
42 |
+
"num_labels": 3,
|
43 |
+
"device": "cpu",
|
44 |
+
"load_function": "load_model",
|
45 |
+
"predict_function": "predict"
|
46 |
+
},
|
47 |
+
"4": {
|
48 |
+
"name": "LSTM Custom Model",
|
49 |
+
"type": "lstm_uncased_custom",
|
50 |
+
"module_path": "hmv_cfg_base_stage1.model4",
|
51 |
+
"hf_location": "tachygraphy-microtrext-norm-org/LSTM-LV1-SentimentPolarities",
|
52 |
+
"tokenizer_class": "",
|
53 |
+
"model_class": "",
|
54 |
+
"problem_type": "multi_label_classification",
|
55 |
+
"base_model": "",
|
56 |
+
"base_model_class": "",
|
57 |
+
"num_labels": 3,
|
58 |
+
"device": "cpu",
|
59 |
+
"load_function": "load_model",
|
60 |
+
"predict_function": "predict"
|
61 |
+
}
|
62 |
+
}
|
{sentiment_analysis β sentimentPolarity_analysis}/hmv_cfg_base_stage1/__init__.py
RENAMED
@@ -1 +1 @@
|
|
1 |
-
# from . import model1
|
|
|
1 |
+
# from . import model1
|
sentimentPolarity_analysis/hmv_cfg_base_stage1/imports.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
|
4 |
+
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), )))
|
5 |
+
|
6 |
+
import streamlit as st
|
7 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModel, DebertaV2Tokenizer, DebertaV2ForSequenceClassification, DebertaV2Model
|
8 |
+
# import torch
|
9 |
+
import numpy as np
|
10 |
+
import matplotlib.pyplot as plt
|
11 |
+
import plotly.express as px
|
12 |
+
import pandas as pd
|
13 |
+
import json
|
14 |
+
import gc
|
15 |
+
import psutil
|
16 |
+
import importlib
|
17 |
+
import importlib.util
|
18 |
+
import asyncio
|
19 |
+
# import pytorch_lightning as pl
|
20 |
+
|
21 |
+
import safetensors
|
22 |
+
from safetensors import load_file, save_file
|
23 |
+
import json
|
24 |
+
import huggingface_hub
|
25 |
+
from huggingface_hub import hf_hub_download
|
{sentiment_analysis β sentimentPolarity_analysis}/hmv_cfg_base_stage1/model1.py
RENAMED
@@ -1,85 +1,85 @@
|
|
1 |
-
import os
|
2 |
-
import sys
|
3 |
-
|
4 |
-
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), )))
|
5 |
-
|
6 |
-
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
|
7 |
-
CONFIG_STAGE1 = os.path.join(BASE_DIR, "..", "config", "stage1_models.json")
|
8 |
-
|
9 |
-
import torch
|
10 |
-
import torch.nn as nn
|
11 |
-
from imports import *
|
12 |
-
import torch.nn.functional as F
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
MODEL_OPTIONS = {
|
18 |
-
"1": {
|
19 |
-
"name": "DeBERTa v3 Base for Sequence Classification",
|
20 |
-
"type": "hf_automodel_finetuned_dbt3",
|
21 |
-
"module_path": "hmv_cfg_base_stage1.model1",
|
22 |
-
"hf_location": "tachygraphy-microtrext-norm-org/DeBERTa-v3-seqClassfication-LV1-SentimentPolarities-Batch8",
|
23 |
-
"tokenizer_class": "DebertaV2Tokenizer",
|
24 |
-
"model_class": "DebertaV2ForSequenceClassification",
|
25 |
-
"problem_type": "multi_label_classification",
|
26 |
-
"base_model": "microsoft/deberta-v3-base",
|
27 |
-
"base_model_class": "DebertaV2ForSequenceClassification",
|
28 |
-
"num_labels": 3,
|
29 |
-
"device": "cpu",
|
30 |
-
"load_function": "load_model",
|
31 |
-
"predict_function": "predict"
|
32 |
-
}
|
33 |
-
}
|
34 |
-
|
35 |
-
|
36 |
-
model_key = "1"
|
37 |
-
model_info = MODEL_OPTIONS[model_key]
|
38 |
-
hf_location = model_info["hf_location"]
|
39 |
-
|
40 |
-
tokenizer_class = globals()[model_info["tokenizer_class"]]
|
41 |
-
model_class = globals()[model_info["model_class"]]
|
42 |
-
|
43 |
-
|
44 |
-
@st.cache_resource
|
45 |
-
def load_model():
|
46 |
-
tokenizer = tokenizer_class.from_pretrained(hf_location)
|
47 |
-
print("Loading model 1")
|
48 |
-
model = model_class.from_pretrained(hf_location,
|
49 |
-
problem_type=model_info["problem_type"],
|
50 |
-
num_labels=model_info["num_labels"]
|
51 |
-
)
|
52 |
-
print("Model 1 loaded")
|
53 |
-
|
54 |
-
return model, tokenizer
|
55 |
-
|
56 |
-
|
57 |
-
def predict(text, model, tokenizer, device, max_len=128):
|
58 |
-
# Tokenize and pad the input text
|
59 |
-
inputs = tokenizer(
|
60 |
-
text,
|
61 |
-
add_special_tokens=True,
|
62 |
-
padding=True,
|
63 |
-
truncation=False,
|
64 |
-
return_tensors="pt",
|
65 |
-
return_token_type_ids=False,
|
66 |
-
).to(device) # Move input tensors to the correct device
|
67 |
-
|
68 |
-
with torch.no_grad():
|
69 |
-
outputs = model(**inputs)
|
70 |
-
|
71 |
-
# probabilities = outputs.logits.cpu().numpy()
|
72 |
-
|
73 |
-
# probabilities = torch.relu(outputs.logits)
|
74 |
-
# probabilities = torch.clamp(torch.tensor(probabilities), min=0.00000, max=1.00000).cpu().numpy()
|
75 |
-
# probabilities /= probabilities.sum()
|
76 |
-
# probabilities = probabilities.cpu().numpy()
|
77 |
-
|
78 |
-
predictions = torch.sigmoid(outputs.logits).cpu().numpy()
|
79 |
-
|
80 |
-
return predictions
|
81 |
-
|
82 |
-
|
83 |
-
if __name__ == "__main__":
|
84 |
-
model, tokenizer = load_model()
|
85 |
-
print("Model and tokenizer loaded successfully.")
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
|
4 |
+
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), )))
|
5 |
+
|
6 |
+
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
|
7 |
+
CONFIG_STAGE1 = os.path.join(BASE_DIR, "..", "config", "stage1_models.json")
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
from imports import *
|
12 |
+
import torch.nn.functional as F
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
+
MODEL_OPTIONS = {
|
18 |
+
"1": {
|
19 |
+
"name": "DeBERTa v3 Base for Sequence Classification",
|
20 |
+
"type": "hf_automodel_finetuned_dbt3",
|
21 |
+
"module_path": "hmv_cfg_base_stage1.model1",
|
22 |
+
"hf_location": "tachygraphy-microtrext-norm-org/DeBERTa-v3-seqClassfication-LV1-SentimentPolarities-Batch8",
|
23 |
+
"tokenizer_class": "DebertaV2Tokenizer",
|
24 |
+
"model_class": "DebertaV2ForSequenceClassification",
|
25 |
+
"problem_type": "multi_label_classification",
|
26 |
+
"base_model": "microsoft/deberta-v3-base",
|
27 |
+
"base_model_class": "DebertaV2ForSequenceClassification",
|
28 |
+
"num_labels": 3,
|
29 |
+
"device": "cpu",
|
30 |
+
"load_function": "load_model",
|
31 |
+
"predict_function": "predict"
|
32 |
+
}
|
33 |
+
}
|
34 |
+
|
35 |
+
|
36 |
+
model_key = "1"
|
37 |
+
model_info = MODEL_OPTIONS[model_key]
|
38 |
+
hf_location = model_info["hf_location"]
|
39 |
+
|
40 |
+
tokenizer_class = globals()[model_info["tokenizer_class"]]
|
41 |
+
model_class = globals()[model_info["model_class"]]
|
42 |
+
|
43 |
+
|
44 |
+
@st.cache_resource
|
45 |
+
def load_model():
|
46 |
+
tokenizer = tokenizer_class.from_pretrained(hf_location)
|
47 |
+
print("Loading model 1")
|
48 |
+
model = model_class.from_pretrained(hf_location,
|
49 |
+
problem_type=model_info["problem_type"],
|
50 |
+
num_labels=model_info["num_labels"]
|
51 |
+
)
|
52 |
+
print("Model 1 loaded")
|
53 |
+
|
54 |
+
return model, tokenizer
|
55 |
+
|
56 |
+
|
57 |
+
def predict(text, model, tokenizer, device, max_len=128):
|
58 |
+
# Tokenize and pad the input text
|
59 |
+
inputs = tokenizer(
|
60 |
+
text,
|
61 |
+
add_special_tokens=True,
|
62 |
+
padding=True,
|
63 |
+
truncation=False,
|
64 |
+
return_tensors="pt",
|
65 |
+
return_token_type_ids=False,
|
66 |
+
).to(device) # Move input tensors to the correct device
|
67 |
+
|
68 |
+
with torch.no_grad():
|
69 |
+
outputs = model(**inputs)
|
70 |
+
|
71 |
+
# probabilities = outputs.logits.cpu().numpy()
|
72 |
+
|
73 |
+
# probabilities = torch.relu(outputs.logits)
|
74 |
+
# probabilities = torch.clamp(torch.tensor(probabilities), min=0.00000, max=1.00000).cpu().numpy()
|
75 |
+
# probabilities /= probabilities.sum()
|
76 |
+
# probabilities = probabilities.cpu().numpy()
|
77 |
+
|
78 |
+
predictions = torch.sigmoid(outputs.logits).cpu().numpy()
|
79 |
+
|
80 |
+
return predictions
|
81 |
+
|
82 |
+
|
83 |
+
if __name__ == "__main__":
|
84 |
+
model, tokenizer = load_model()
|
85 |
+
print("Model and tokenizer loaded successfully.")
|
{sentiment_analysis β sentimentPolarity_analysis}/hmv_cfg_base_stage1/model2.py
RENAMED
@@ -11,7 +11,7 @@ import joblib
|
|
11 |
|
12 |
import torch
|
13 |
import torch.nn as nn
|
14 |
-
import torch.functional as F
|
15 |
from transformers import DebertaV2Model, DebertaV2Tokenizer
|
16 |
import safetensors
|
17 |
# from safetensors import load_file, save_file
|
@@ -78,7 +78,7 @@ class SentimentModel(nn.Module):
|
|
78 |
@classmethod
|
79 |
@st.cache_resource
|
80 |
def load_pretrained(cls, model_path_or_repo):
|
81 |
-
"""Loads and caches the model (RoBERTa + SentimentModel) only when called."""
|
82 |
print(f"Loading model from {model_path_or_repo}...")
|
83 |
|
84 |
model_config_path = hf_hub_download(model_path_or_repo, "config.json")
|
|
|
11 |
|
12 |
import torch
|
13 |
import torch.nn as nn
|
14 |
+
import torch.nn.functional as F
|
15 |
from transformers import DebertaV2Model, DebertaV2Tokenizer
|
16 |
import safetensors
|
17 |
# from safetensors import load_file, save_file
|
|
|
78 |
@classmethod
|
79 |
@st.cache_resource
|
80 |
def load_pretrained(cls, model_path_or_repo):
|
81 |
+
# """Loads and caches the model (RoBERTa + SentimentModel) only when called."""
|
82 |
print(f"Loading model from {model_path_or_repo}...")
|
83 |
|
84 |
model_config_path = hf_hub_download(model_path_or_repo, "config.json")
|
{sentiment_analysis β sentimentPolarity_analysis}/hmv_cfg_base_stage1/model3.py
RENAMED
File without changes
|
{sentiment_analysis β sentimentPolarity_analysis}/hmv_cfg_base_stage1/model4.py
RENAMED
File without changes
|
{sentiment_analysis β sentimentPolarity_analysis}/sentiment_analysis_main.py
RENAMED
File without changes
|
sentiment_analysis/hmv_cfg_base_stage1/__pycache__/__init__.cpython-310.pyc
DELETED
Binary file (186 Bytes)
|
|
sentiment_analysis/hmv_cfg_base_stage1/__pycache__/__init__.cpython-312.pyc
DELETED
Binary file (284 Bytes)
|
|
sentiment_analysis/hmv_cfg_base_stage1/__pycache__/model1.cpython-310.pyc
DELETED
Binary file (1.95 kB)
|
|
sentiment_analysis/hmv_cfg_base_stage1/__pycache__/model1.cpython-312.pyc
DELETED
Binary file (2.96 kB)
|
|