import os import sys sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), ))) from imports import * import importlib.util import os import sys import joblib import time import torch # from transformers.utils import move_cache_to_trash # from huggingface_hub import delete_cache from transformers.utils.hub import TRANSFORMERS_CACHE import shutil # from hmv_cfg_base_stage1.model1 import load_model as load_model1 # from hmv_cfg_base_stage1.model1 import predict as predict1 BASE_DIR = os.path.dirname(os.path.abspath(__file__)) CONFIG_STAGE1 = os.path.join(BASE_DIR, "config", "stage1_models.json") LOADERS_STAGE1 = os.path.join(BASE_DIR, "hmv-cfg-base-stage1") SENTIMENT_POLARITY_LABELS = [ "negative", "neutral", "positive" ] current_model = None current_tokenizer = None # Enabling Resource caching # @st.cache_resource def load_model_config(): with open(CONFIG_STAGE1, "r") as f: model_data = json.load(f) # Extract names for dropdown model_options = {v["name"]: v for v in model_data.values()} return model_data, model_options MODEL_DATA, MODEL_OPTIONS = load_model_config() # ✅ Dynamically Import Model Functions def import_from_module(module_name, function_name): try: module = importlib.import_module(module_name) return getattr(module, function_name) except (ModuleNotFoundError, AttributeError) as e: st.error(f"❌ Import Error: {e}") return None def free_memory(): # """Free up CPU & GPU memory before loading a new model.""" global current_model, current_tokenizer if current_model is not None: del current_model # Delete the existing model current_model = None # Reset reference if current_tokenizer is not None: del current_tokenizer # Delete the tokenizer current_tokenizer = None gc.collect() # Force garbage collection for CPU memory if torch.cuda.is_available(): torch.cuda.empty_cache() # Free GPU memory torch.cuda.ipc_collect() # Clean up PyTorch GPU cache # If running on CPU, reclaim memory using OS-level commands try: if torch.cuda.is_available() is False: psutil.virtual_memory() # Refresh memory stats except Exception as e: print(f"Memory cleanup error: {e}") # Delete cached Hugging Face models try: cache_dir = TRANSFORMERS_CACHE if os.path.exists(cache_dir): shutil.rmtree(cache_dir) print("Cache cleared!") except Exception as e: print(f"❌ Cache cleanup error: {e}") def load_selected_model(model_name): global current_model, current_tokenizer # st.cache_resource.clear() # free_memory() # st.write("DEBUG: Available Models:", MODEL_OPTIONS.keys()) # ✅ See available models # st.write("DEBUG: Selected Model:", MODEL_OPTIONS[model_name]) # ✅ Check selected model # st.write("DEBUG: Model Name:", model_name) # ✅ Check selected model if model_name not in MODEL_OPTIONS: st.error(f"⚠️ Model '{model_name}' not found in config!") return None, None, None model_info = MODEL_OPTIONS[model_name] hf_location = model_info["hf_location"] model_module = model_info["module_path"] load_function = model_info["load_function"] predict_function = model_info["predict_function"] load_model_func = import_from_module(model_module, load_function) predict_func = import_from_module(model_module, predict_function) if load_model_func is None or predict_func is None: st.error("❌ Model functions could not be loaded!") return None, None, None model, tokenizer = load_model_func() current_model, current_tokenizer = model, tokenizer return model, tokenizer, predict_func def disable_ui(): st.components.v1.html( """
""", height=0, scrolling=False ) def enable_ui(): st.components.v1.html( """ """, height=0, scrolling=False ) # Function to increment progress dynamically def update_progress(progress_bar, start, end, delay=0.1): for i in range(start, end + 1, 5): # Increment in steps of 5% progress_bar.progress(i) time.sleep(delay) # Simulate processing time # st.experimental_rerun() # Refresh the page # Function to update session state when model changes def on_model_change(): st.session_state.model_changed = True # Mark model as changed # Function to update session state when text changes def on_text_change(): st.session_state.text_changed = True # Mark text as changed # Initialize session state variables if "selected_model" not in st.session_state: st.session_state.selected_model = list(MODEL_OPTIONS.keys())[ 0] # Default model if "user_input" not in st.session_state: st.session_state.user_input = "" if "last_processed_input" not in st.session_state: st.session_state.last_processed_input = "" if "model_changed" not in st.session_state: st.session_state.model_changed = False if "text_changed" not in st.session_state: st.session_state.text_changed = False if "disabled" not in st.session_state: st.session_state.disabled = False def show_sentiment_analysis(): model_names = list(MODEL_OPTIONS.keys()) # Check if the stored selected model is valid; if not, reset it if "selected_model" in st.session_state: if st.session_state.selected_model not in model_names: st.session_state.selected_model = model_names[0] else: st.session_state.selected_model = model_names[0] st.title("Stage 1: Sentiment Polarity Analysis") st.write("This section handles sentiment analysis.") # Model selection with change detection selected_model = st.selectbox( "Choose a model:", list(MODEL_OPTIONS.keys()), key="selected_model_stage1", on_change=on_model_change ) # Text input with change detection user_input = st.text_input( "Enter text for sentiment analysis:", key="user_input_stage1", on_change=on_text_change ) user_input_copy = user_input # Only run inference if: # 1. The text is NOT empty # 2. The text has changed OR the model has changed if user_input.strip() and (st.session_state.text_changed or st.session_state.model_changed): # disable_ui() # Reset session state flags st.session_state.last_processed_input = user_input st.session_state.model_changed = False st.session_state.text_changed = False # Store selected model # ADD A DYNAMIC PROGRESS BAR progress_bar = st.progress(0) update_progress(progress_bar, 0, 10) # status_text = st.empty() # update_progress(0, 10) # status_text.text("Loading model...") # Make prediction # model, tokenizer = load_model() # model, tokenizer = load_selected_model(selected_model) col_spinner, col_warning = st.columns(2) with col_warning: warning_placeholder = st.empty() warning_placeholder.warning("Don't change the text data or any input parameters or switch models or pages while inference is loading...") with col_spinner: with st.spinner("Please wait, inference is loading..."): model, tokenizer, predict_func = load_selected_model(selected_model) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") if model is None: st.error( "⚠️ Error: Model failed to load! Check model selection or configuration.") st.stop() # model.to(device) if hasattr(model, "to"): model.to(device) # predictions = predict(user_input, model, tokenizer, device) predictions = predict_func(user_input, model, tokenizer, device) # Squeeze predictions to remove extra dimensions predictions_array = predictions.squeeze() # Convert to binary predictions (argmax) binary_predictions = np.zeros_like(predictions_array) max_indices = np.argmax(predictions_array) binary_predictions[max_indices] = 1 # Update progress bar for prediction and model loading update_progress(progress_bar, 10, 100) warning_placeholder.empty() # Display raw predictions st.write(f"**Predicted Sentiment Scores:** {predictions_array}") # enable_ui() ## # Display binary classification result st.write(f"**Predicted Sentiment:**") st.write(f"**NEGATIVE:** {binary_predictions[0]}, **NEUTRAL:** {binary_predictions[1]}, **POSITIVE:** {binary_predictions[2]}") # st.write(f"**NEUTRAL:** {binary_predictions[1]}") # st.write(f"**POSITIVE:** {binary_predictions[2]}") col1, col2 = st.columns(2) sentiment_polarities = predictions_array.tolist() with col1: # 1️⃣ **Polar Plot (Plotly)** fig_polar = px.line_polar( pd.DataFrame(dict(r=sentiment_polarities, theta=SENTIMENT_POLARITY_LABELS)), r='r', theta='theta', line_close=True ) st.plotly_chart(fig_polar) normalized_predictions = predictions_array / predictions_array.sum() with col2: # 2️⃣ **Normalized Horizontal Bar Chart (Matplotlib)** fig, ax = plt.subplots(figsize=(8, 2)) left = 0 for i in range(len(normalized_predictions)): ax.barh(0, normalized_predictions[i], color=plt.cm.tab10( i), left=left, label=SENTIMENT_POLARITY_LABELS[i]) left += normalized_predictions[i] # Configure the chart ax.set_xlim(0, 1) ax.set_yticks([]) ax.set_xticks(np.arange(0, 1.1, 0.1)) ax.legend(loc='upper center', bbox_to_anchor=( 0.5, -0.15), ncol=len(SENTIMENT_POLARITY_LABELS)) plt.title("Sentiment Polarity Prediction Distribution") # Display in Streamlit st.pyplot(fig) progress_bar.empty() if __name__ == "__main__": show_sentiment_analysis() ######### # def show_sentiment_analysis(): # st.cache_resource.clear() # free_memory() # st.title("Stage 1: Sentiment Polarity Analysis") # st.write("This section handles sentiment analysis.") # # Model selection with change detection # selected_model = st.selectbox( # "Choose a model:", list(MODEL_OPTIONS.keys()), key="selected_model", on_change=on_model_change # ) # # Text input with change detection # user_input = st.text_input( # "Enter text for sentiment analysis:", key="user_input", on_change=on_text_change # ) # user_input_copy = user_input # # Only run inference if: # # 1. The text is NOT empty # # 2. The text has changed OR the model has changed # if user_input.strip() and (st.session_state.text_changed or st.session_state.model_changed): # # Reset session state flags # st.session_state.last_processed_input = user_input # st.session_state.model_changed = False # st.session_state.text_changed = False # Store selected model # # ADD A DYNAMIC PROGRESS BAR # progress_bar = st.progress(0) # update_progress(progress_bar, 0, 10) # # status_text = st.empty() # # update_progress(0, 10) # # status_text.text("Loading model...") # # Make prediction # # model, tokenizer = load_model() # # model, tokenizer = load_selected_model(selected_model) # with st.spinner("Please wait..."): # model, tokenizer, predict_func = load_selected_model(selected_model) # device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # if model is None: # st.error( # "⚠️ Error: Model failed to load! Check model selection or configuration.") # st.stop() # model.to(device) # # predictions = predict(user_input, model, tokenizer, device) # predictions = predict_func(user_input, model, tokenizer, device) # # Squeeze predictions to remove extra dimensions # predictions_array = predictions.squeeze() # # Convert to binary predictions (argmax) # binary_predictions = np.zeros_like(predictions_array) # max_indices = np.argmax(predictions_array) # binary_predictions[max_indices] = 1 # # Update progress bar for prediction and model loading # update_progress(progress_bar, 10, 100) # # Display raw predictions # st.write(f"**Predicted Sentiment Scores:** {predictions_array}") # # Display binary classification result # st.write(f"**Predicted Sentiment:**") # st.write( # f"**NEGATIVE:** {binary_predictions[0]}, **NEUTRAL:** {binary_predictions[1]}, **POSITIVE:** {binary_predictions[2]}") # # st.write(f"**NEUTRAL:** {binary_predictions[1]}") # # st.write(f"**POSITIVE:** {binary_predictions[2]}") # # 1️⃣ **Polar Plot (Plotly)** # sentiment_polarities = predictions_array.tolist() # fig_polar = px.line_polar( # pd.DataFrame(dict(r=sentiment_polarities, # theta=SENTIMENT_POLARITY_LABELS)), # r='r', theta='theta', line_close=True # ) # st.plotly_chart(fig_polar) # # 2️⃣ **Normalized Horizontal Bar Chart (Matplotlib)** # normalized_predictions = predictions_array / predictions_array.sum() # fig, ax = plt.subplots(figsize=(8, 2)) # left = 0 # for i in range(len(normalized_predictions)): # ax.barh(0, normalized_predictions[i], color=plt.cm.tab10( # i), left=left, label=SENTIMENT_POLARITY_LABELS[i]) # left += normalized_predictions[i] # # Configure the chart # ax.set_xlim(0, 1) # ax.set_yticks([]) # ax.set_xticks(np.arange(0, 1.1, 0.1)) # ax.legend(loc='upper center', bbox_to_anchor=( # 0.5, -0.15), ncol=len(SENTIMENT_POLARITY_LABELS)) # plt.title("Sentiment Polarity Prediction Distribution") # # Display in Streamlit # st.pyplot(fig) # progress_bar.empty() ###### ######## # def show_sentiment_analysis(): # st.cache_resource.clear() # free_memory() # st.title("Stage 1: Sentiment Polarity Analysis") # st.write("This section handles sentiment analysis.") # # Model selection with change detection # selected_model = st.selectbox( # "Choose a model:", list(MODEL_OPTIONS.keys()), key="selected_model", on_change=on_model_change, disabled=st.session_state.disabled # ) # # Text input with change detection # user_input = st.text_input( # "Enter text for sentiment analysis:", key="user_input", on_change=on_text_change, disabled=st.session_state.disabled # ) # user_input_copy = user_input # # progress_bar = st.progress(0) # progress_bar = st.empty() # if st.session_state.disabled is False and st.session_state.predictions is not None: # st.write(f"**Predicted Sentiment Scores:** {st.session_state.predictions}") # st.write(f"**NEGATIVE:** {st.session_state.binary_predictions[0]}, **NEUTRAL:** {st.session_state.binary_predictions[1]}, **POSITIVE:** {st.session_state.binary_predictions[2]}") # st.plotly_chart(st.session_state.polar_plot) # st.pyplot(st.session_state.bar_chart) # update_progress(progress_bar, 95, 100) # st.session_state.predictions = None # st.session_state.binary_predictions = None # st.session_state.polar_plot = None # st.session_state.bar_chart = None # st.session_state.disabled = False # progress_bar.empty() # if user_input.strip() and (st.session_state.text_changed or st.session_state.model_changed) and st.session_state.disabled is False: # st.session_state.disabled = True # st.rerun() # return # if user_input.strip() and (st.session_state.text_changed or st.session_state.model_changed) and st.session_state.disabled is True: # # Mark processing as True to # # Reset session state flags # st.session_state.last_processed_input = user_input # st.session_state.model_changed = False # st.session_state.text_changed = False # Store selected model # # ADD A DYNAMIC PROGRESS BAR # progress_bar = st.progress(0) # update_progress(progress_bar, 0, 10) # # status_text = st.empty() # # update_progress(0, 10) # # status_text.text("Loading model...") # # Make prediction # # model, tokenizer = load_model() # # model, tokenizer = load_selected_model(selected_model) # with st.spinner("Please wait..."): # model, tokenizer, predict_func = load_selected_model(selected_model) # device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # if model is None: # st.error( # "⚠️ Error: Model failed to load! Check model selection or configuration.") # st.session_state.disabled = False # st.rerun() # st.stop() # return # model.to(device) # # predictions = predict(user_input, model, tokenizer, device) # predictions = predict_func(user_input, model, tokenizer, device) # # Squeeze predictions to remove extra dimensions # predictions_array = predictions.squeeze() # # Convert to binary predictions (argmax) # binary_predictions = np.zeros_like(predictions_array) # max_indices = np.argmax(predictions_array) # binary_predictions[max_indices] = 1 # # Update progress bar for prediction and model loading # update_progress(progress_bar, 10, 75) # # Display raw predictions # # st.write(f"**Predicted Sentiment Scores:** {predictions_array}") # st.session_state.predictions = predictions_array # # Display binary classification result # # st.write(f"**Predicted Sentiment:**") # # st.write(f"**NEGATIVE:** {binary_predictions[0]}, **NEUTRAL:** {binary_predictions[1]}, **POSITIVE:** {binary_predictions[2]}") # st.session_state.binary_predictions = binary_predictions # # 1️⃣ **Polar Plot (Plotly)** # sentiment_polarities = predictions_array.tolist() # fig_polar = px.line_polar( # pd.DataFrame(dict(r=sentiment_polarities, # theta=SENTIMENT_POLARITY_LABELS)), # r='r', theta='theta', line_close=True # ) # # st.plotly_chart(fig_polar) # st.session_state.polar_plot = fig_polar # # 2️⃣ **Normalized Horizontal Bar Chart (Matplotlib)** # normalized_predictions = predictions_array / predictions_array.sum() # fig, ax = plt.subplots(figsize=(8, 2)) # left = 0 # for i in range(len(normalized_predictions)): # ax.barh(0, normalized_predictions[i], color=plt.cm.tab10( # i), left=left, label=SENTIMENT_POLARITY_LABELS[i]) # left += normalized_predictions[i] # # Configure the chart # ax.set_xlim(0, 1) # ax.set_yticks([]) # ax.set_xticks(np.arange(0, 1.1, 0.1)) # ax.legend(loc='upper center', bbox_to_anchor=( # 0.5, -0.15), ncol=len(SENTIMENT_POLARITY_LABELS)) # # plt.title("Sentiment Polarity Prediction Distribution") # # st.pyplot(fig) # st.session_state.bar_chart = fig # update_progress(progress_bar, 75, 95) # # progress_bar.empty() # if st.session_state.disabled is True: # st.session_state.disabled = False # st.rerun() # return # else: # return ##### ### COMMENTED OUT CODE ### # def load_selected_model(model_name): # # """Load model and tokenizer based on user selection.""" # global current_model, current_tokenizer # # Free memory before loading a new model # free_memory() # if model_name not in MODEL_OPTIONS: # st.error(f"⚠️ Model '{model_name}' not found in config!") # return None, None # model_info = MODEL_OPTIONS[model_name] # hf_location = model_info["hf_location"] # model_module = model_info["module_path"] # # load_function = "load_model" # # predict_function = "predict" # load_function = model_info["load_function"] # predict_function = model_info["predict_function"] # # tokenizer_class = globals()[model_info["tokenizer_class"]] # # model_class = globals()[model_info["model_class"]] # # tokenizer = tokenizer_class.from_pretrained(hf_location) # load_model_func = import_from_module(model_module, load_function) # predict_func = import_from_module(model_module, predict_function) # # # Load model # # if model_info["type"] == "custom_checkpoint" or model_info["type"] == "custom_model": # # model = torch.load(hf_location, map_location="cpu") # Load PyTorch model # # elif model_info["type"] == "hf_automodel_finetuned_dbt3": # # tokenizer_class = globals()[model_info["tokenizer_class"]] # # model_class = globals()[model_info["model_class"]] # # tokenizer = tokenizer_class.from_pretrained(hf_location) # # model = model_class.from_pretrained(hf_location, # # problem_type=model_info["problem_type"], # # num_labels=model_info["num_labels"] # # ) # # else: # # st.error("Invalid model selection") # # return None, None # if load_model_func is None or predict_func is None: # st.error("❌ Model functions could not be loaded!") # return None, None # # current_model, current_tokenizer = model, tokenizer # Store references # # return model, tokenizer # model, tokenizer = load_model_func(hf_location) # current_model, current_tokenizer = model, tokenizer # return model, tokenizer, predict_func # def predict(text, model, tokenizer, device, max_len=128): # # Tokenize and pad the input text # inputs = tokenizer( # text, # add_special_tokens=True, # padding=True, # truncation=False, # return_tensors="pt", # return_token_type_ids=False, # ).to(device) # Move input tensors to the correct device # with torch.no_grad(): # outputs = model(**inputs) # # Apply sigmoid activation (for BCEWithLogitsLoss) # probabilities = outputs.logits.cpu().numpy() # return probabilities # def show_sentiment_analysis(): # Add your sentiment analysis code here # user_input = st.text_input("Enter text for sentiment analysis:") # user_input = st.text_area("Enter text for sentiment analysis:", height=200) # user_input = st.text_area("Enter text for sentiment analysis:", max_chars=500) # def show_sentiment_analysis(): # st.title("Stage 1: Sentiment Polarity Analysis") # st.write("This section will handle sentiment analysis.") # if "selected_model" not in st.session_state: # st.session_state.selected_model = list(MODEL_OPTIONS.keys())[0] # Default selection # if "clear_output" not in st.session_state: # st.session_state.clear_output = False # st.selectbox("Choose a model:", list(MODEL_OPTIONS.keys()), key="selected_model") # selected_model = st.session_state.selected_model # if selected_model not in MODEL_OPTIONS: # st.error(f"❌ Selected model '{selected_model}' not found!") # st.stop() # st.session_state.clear_output = True # Reset output when model changes # # st.write("DEBUG: Available Models:", MODEL_OPTIONS.keys()) # ✅ See available models # # st.write("DEBUG: Selected Model:", MODEL_OPTIONS[selected_model]) # ✅ Check selected model # user_input = st.text_input("Enter text for sentiment analysis:") # user_input_copy = user_input # # if st.button("Run Analysis"): # # if not user_input.strip(): # # st.warning("⚠️ Please enter some text before running analysis.") # # return # # with st.form(key="sentiment_form"): # # user_input = st.text_input("Enter text for sentiment analysis:") # # submit_button = st.form_submit_button("Run Analysis") # # user_input_copy = user_input # if user_input.strip(): # ADD A DYNAMIC PROGRESS BAR # progress_bar = st.progress(0) # update_progress(progress_bar, 0, 10) # # status_text = st.empty() # # update_progress(0, 10) # # status_text.text("Loading model...") # # Make prediction # # model, tokenizer = load_model() # # model, tokenizer = load_selected_model(selected_model) # model, tokenizer, predict_func = load_selected_model(selected_model) # device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # if model is None: # st.error("⚠️ Error: Model failed to load! Check model selection or configuration.") # st.stop() # model.to(device) # # predictions = predict(user_input, model, tokenizer, device) # predictions = predict_func(user_input, model, tokenizer, device) # # Squeeze predictions to remove extra dimensions # predictions_array = predictions.squeeze() # # Convert to binary predictions (argmax) # binary_predictions = np.zeros_like(predictions_array) # max_indices = np.argmax(predictions_array) # binary_predictions[max_indices] = 1 # # Update progress bar for prediction and model loading # update_progress(progress_bar, 10, 100) # # Display raw predictions # st.write(f"**Predicted Sentiment Scores:** {predictions_array}") # # Display binary classification result # st.write(f"**Predicted Sentiment:**") # st.write(f"**NEGATIVE:** {binary_predictions[0]}, **NEUTRAL:** {binary_predictions[1]}, **POSITIVE:** {binary_predictions[2]}") # # st.write(f"**NEUTRAL:** {binary_predictions[1]}") # # st.write(f"**POSITIVE:** {binary_predictions[2]}") # # 1️⃣ **Polar Plot (Plotly)** # sentiment_polarities = predictions_array.tolist() # fig_polar = px.line_polar( # pd.DataFrame(dict(r=sentiment_polarities, theta=SENTIMENT_POLARITY_LABELS)), # r='r', theta='theta', line_close=True # ) # st.plotly_chart(fig_polar) # # 2️⃣ **Normalized Horizontal Bar Chart (Matplotlib)** # normalized_predictions = predictions_array / predictions_array.sum() # fig, ax = plt.subplots(figsize=(8, 2)) # left = 0 # for i in range(len(normalized_predictions)): # ax.barh(0, normalized_predictions[i], color=plt.cm.tab10(i), left=left, label=SENTIMENT_POLARITY_LABELS[i]) # left += normalized_predictions[i] # # Configure the chart # ax.set_xlim(0, 1) # ax.set_yticks([]) # ax.set_xticks(np.arange(0, 1.1, 0.1)) # ax.legend(loc='upper center', bbox_to_anchor=(0.5, -0.15), ncol=len(SENTIMENT_POLARITY_LABELS)) # plt.title("Sentiment Polarity Prediction Distribution") # # Display in Streamlit # st.pyplot(fig) # progress_bar.empty()