Spaces:
Sleeping
Sleeping
File size: 8,622 Bytes
8831957 d608708 8831957 e359ead 8831957 e359ead 8831957 e359ead 8831957 e359ead 8831957 2fdf5af 8831957 2fdf5af 8831957 2fdf5af 871e02d 8831957 2fdf5af 8831957 2fdf5af 8831957 c8071ec 8831957 2fdf5af 8831957 2fdf5af 8831957 2fdf5af c8071ec 8abf2d0 8831957 c8071ec 8831957 2fdf5af 8831957 2fdf5af c8071ec 8831957 c8071ec 8831957 2fdf5af 8831957 22a9023 8831957 22a9023 8831957 22a9023 8831957 22a9023 8831957 22a9023 8831957 22a9023 8831957 22a9023 8831957 22a9023 8831957 22a9023 8831957 22a9023 8831957 22a9023 8831957 22a9023 8831957 22a9023 8831957 22a9023 8831957 22a9023 8831957 22a9023 8831957 22a9023 8831957 22a9023 8831957 505138e 8831957 505138e 8831957 e359ead 505138e 8831957 e359ead 8831957 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
import os.path
import time as reqtime
import datetime
from pytz import timezone
import torch
import spaces
import gradio as gr
from x_transformer_1_23_2 import *
import random
import copy
import tqdm
from midi_to_colab_audio import midi_to_colab_audio
import TMIDIX
import matplotlib.pyplot as plt
in_space = os.getenv("SYSTEM") == "spaces"
# =================================================================================================
@spaces.GPU
def GenerateGroove():
print('=' * 70)
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
start_time = reqtime.time()
print('Loading model...')
SEQ_LEN = 4096 # Models seq len
PAD_IDX = 1664 # Models pad index
DEVICE = 'cuda' # 'cuda'
# instantiate the model
model = TransformerWrapper(
num_tokens = PAD_IDX+1,
max_seq_len = SEQ_LEN,
attn_layers = Decoder(dim = 1024, depth = 24, heads = 16, attn_flash = True)
)
model = AutoregressiveWrapper(model, ignore_index = PAD_IDX)
model.to(DEVICE)
print('=' * 70)
print('Loading model checkpoint...')
model.load_state_dict(
torch.load('Groove_Music_Transformer_Medium_Trained_Model_23268_steps_0.7459_loss_0.797_acc.pth',
map_location=DEVICE))
print('=' * 70)
model.eval()
if DEVICE == 'cpu':
dtype = torch.bfloat16
else:
dtype = torch.float16
ctx = torch.amp.autocast(device_type=DEVICE, dtype=dtype)
print('Done!')
print('=' * 70)
print('Loading Google Magenta Groove processed MIDIs...')
all_scores = TMIDIX.Tegridy_Any_Pickle_File_Reader('Google_Magenta_Groove_8675_Select_Processed_MIDIs')
print('Done!')
print('=' * 70)
print('=' * 70)
drums_score_idx = random.randint(0, len(all_scores))
drums_score_fn = all_scores[drums_score_idx][0]
drums_score = all_scores[drums_score_idx][1][:160]
print('Drums score index', drums_score_idx)
print('Drums score name', drums_score_fn)
print('Drums score length', len(drums_score))
print('=' * 70)
#==================================================================
print('=' * 70)
print('Sample input events', drums_score[:5])
print('=' * 70)
print('Prepping drums track...')
num_prime_chords = 7
outy = []
for d in drums_score[:num_prime_chords]:
outy.extend(d)
print('Generating...')
max_notes_per_chord=8
num_samples=4
num_memory_tokens = 4096
temperature=1.0
for i in range(num_prime_chords, len(drums_score)):
outy.extend(drums_score[i])
if i == num_prime_chords:
outy.append(256+12)
input_seq = outy[-num_memory_tokens:]
seq = copy.deepcopy(input_seq)
batch_value = 256
nc = 0
while batch_value > 255 and nc < max_notes_per_chord:
x = torch.tensor([seq] * num_samples, dtype=torch.long, device='cuda')
with ctx:
out = model.generate(x,
1,
temperature=temperature,
return_prime=False,
verbose=False)
out1 = [o[0] for o in out.tolist() if o[0] > 255]
if not out1:
out1 = [-1]
batch_value = random.choice(out1)
if batch_value > 255:
seq.append(batch_value)
if batch_value > 383:
nc += 1
out = seq[len(input_seq):]
outy.extend(out)
print('=' * 70)
print('Done!')
print('=' * 70)
#===============================================================================
print('Rendering results...')
print('=' * 70)
print('Sample INTs', outy[:12])
print('=' * 70)
if len(outy) != 0:
song = outy
song_f = []
time = 0
dur = 32
vel = 90
dvels = [100, 120]
pitch = 60
channel = 0
patches = [0, 10, 19, 24, 35, 40, 52, 56, 65, 9, 73, 0, 0, 0, 0, 0]
for ss in song:
if 0 <= ss < 128:
time += ss * 32
if 128 <= ss < 256:
song_f.append(['note', time, 32, 9, ss-128, dvels[(ss-128) % 2], 128])
if 256 < ss < 384:
dur = (ss-256) * 32
if 384 < ss < 1664:
chan = (ss-384) // 128
if chan == 11:
channel = 9
else:
if chan > 8:
channel = chan + 1
else:
channel = chan
if channel == 9:
patch = 128
else:
patch = channel * 8
pitch = (ss-384) % 128
vel = max(50, pitch)
song_f.append(['note', time, dur, channel, pitch, vel, patch])
fn1 = drums_score_fn
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f,
output_signature = 'Groove Music Transformer',
output_file_name = fn1,
track_name='Project Los Angeles',
list_of_MIDI_patches=patches
)
new_fn = fn1+'.mid'
audio = midi_to_colab_audio(new_fn,
soundfont_path=soundfont,
sample_rate=16000,
volume_scale=10,
output_for_gradio=True
)
print('Done!')
print('=' * 70)
#========================================================
output_midi_title = str(fn1)
output_midi_summary = str(song_f[:3])
output_midi = str(new_fn)
output_audio = (16000, audio)
output_plot = TMIDIX.plot_ms_SONG(song_f, plot_title=output_midi, return_plt=True)
print('Output MIDI file name:', output_midi)
print('Output MIDI title:', output_midi_title)
print('Output MIDI summary:', '')
print('=' * 70)
#========================================================
print('-' * 70)
print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('-' * 70)
print('Req execution time:', (reqtime.time() - start_time), 'sec')
return output_midi_title, output_midi_summary, output_midi, output_audio, output_plot
# =================================================================================================
if __name__ == "__main__":
PDT = timezone('US/Pacific')
print('=' * 70)
print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('=' * 70)
soundfont = "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2"
app = gr.Blocks()
with app:
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Groove Music Transformer</h1>")
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Generate music for Google Magenta Groove MIDI dataset drums tracks</h1>")
gr.Markdown(
"\n\n"
"Generate music for Google Magenta Groove MIDI dataset drums tracks\n\n"
"Based upon [Google Magenta Groove MIDI Dataset](https://magenta.tensorflow.org/datasets/groove)\n\n"
)
run_btn = gr.Button("generate groove", variant="primary")
gr.Markdown("## Generation results")
output_midi_title = gr.Textbox(label="Output MIDI title")
output_midi_summary = gr.Textbox(label="Output MIDI summary")
output_audio = gr.Audio(label="Output MIDI audio", format="wav", elem_id="midi_audio")
output_plot = gr.Plot(label="Output MIDI score plot")
output_midi = gr.File(label="Output MIDI file", file_types=[".mid"])
run_event = run_btn.click(GenerateGroove,
outputs=[output_midi_title, output_midi_summary, output_midi, output_audio, output_plot])
app.queue().launch() |