File size: 8,622 Bytes
8831957
 
 
 
 
 
 
 
 
 
 
 
 
d608708
8831957
 
 
 
 
 
 
 
 
 
 
 
e359ead
8831957
 
 
 
 
 
e359ead
 
8831957
 
 
 
 
 
 
e359ead
8831957
 
 
 
 
 
 
 
 
 
e359ead
8831957
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2fdf5af
 
 
 
 
8831957
2fdf5af
8831957
2fdf5af
 
871e02d
8831957
2fdf5af
 
 
 
 
8831957
 
 
 
2fdf5af
8831957
c8071ec
8831957
2fdf5af
 
 
8831957
2fdf5af
8831957
2fdf5af
c8071ec
 
 
8abf2d0
 
 
 
8831957
c8071ec
8831957
2fdf5af
8831957
2fdf5af
c8071ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8831957
c8071ec
8831957
2fdf5af
8831957
 
 
 
 
 
 
 
 
22a9023
8831957
 
22a9023
8831957
22a9023
8831957
 
 
22a9023
8831957
22a9023
 
8831957
 
22a9023
 
 
8831957
22a9023
8831957
22a9023
8831957
22a9023
8831957
22a9023
8831957
22a9023
8831957
22a9023
8831957
22a9023
8831957
22a9023
8831957
22a9023
 
 
 
 
 
 
8831957
22a9023
 
 
 
 
 
 
 
 
 
 
8831957
22a9023
8831957
 
22a9023
8831957
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
505138e
 
8831957
505138e
 
 
8831957
e359ead
505138e
8831957
 
 
 
 
 
 
 
 
 
e359ead
 
 
8831957
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
import os.path

import time as reqtime
import datetime
from pytz import timezone

import torch

import spaces
import gradio as gr

from x_transformer_1_23_2 import *
import random
import copy
import tqdm

from midi_to_colab_audio import midi_to_colab_audio
import TMIDIX

import matplotlib.pyplot as plt

in_space = os.getenv("SYSTEM") == "spaces"
         
# =================================================================================================
                       
@spaces.GPU
def GenerateGroove():
    print('=' * 70)
    print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
    start_time = reqtime.time()

    print('Loading model...')

    SEQ_LEN = 4096 # Models seq len
    PAD_IDX = 1664 # Models pad index
    DEVICE = 'cuda' # 'cuda'

    # instantiate the model

    model = TransformerWrapper(
        num_tokens = PAD_IDX+1,
        max_seq_len = SEQ_LEN,
        attn_layers = Decoder(dim = 1024, depth = 24, heads = 16, attn_flash = True)
        )
    
    model = AutoregressiveWrapper(model, ignore_index = PAD_IDX)

    model.to(DEVICE)
    print('=' * 70)

    print('Loading model checkpoint...')

    model.load_state_dict(
        torch.load('Groove_Music_Transformer_Medium_Trained_Model_23268_steps_0.7459_loss_0.797_acc.pth',
                   map_location=DEVICE))
    print('=' * 70)

    model.eval()

    if DEVICE == 'cpu':
        dtype = torch.bfloat16
    else:
        dtype = torch.float16

    ctx = torch.amp.autocast(device_type=DEVICE, dtype=dtype)

    print('Done!')
    print('=' * 70)
    
    print('Loading Google Magenta Groove processed MIDIs...')
    all_scores = TMIDIX.Tegridy_Any_Pickle_File_Reader('Google_Magenta_Groove_8675_Select_Processed_MIDIs')

    print('Done!')
    print('=' * 70)
    
    print('=' * 70)
    
    drums_score_idx = random.randint(0, len(all_scores))
    drums_score_fn = all_scores[drums_score_idx][0]
    drums_score = all_scores[drums_score_idx][1][:160]
    
    print('Drums score index', drums_score_idx)
    print('Drums score name', drums_score_fn)
    print('Drums score length', len(drums_score))
    print('=' * 70)

    #==================================================================

    print('=' * 70)
    
    print('Sample input events', drums_score[:5])
    print('=' * 70)
    print('Prepping drums track...')

    num_prime_chords = 7
    
    outy = []
    
    for d in drums_score[:num_prime_chords]:

        outy.extend(d)

    print('Generating...')

    max_notes_per_chord=8
    num_samples=4
    num_memory_tokens = 4096
    temperature=1.0
    
    for i in range(num_prime_chords, len(drums_score)):
    
        outy.extend(drums_score[i])
    
        if i == num_prime_chords:
          outy.append(256+12)

        input_seq = outy[-num_memory_tokens:]
        
        seq = copy.deepcopy(input_seq)
        
        batch_value = 256
        
        nc = 0
        
        while batch_value > 255 and nc < max_notes_per_chord:
        
          x = torch.tensor([seq] * num_samples, dtype=torch.long, device='cuda')
        
          with ctx:
            out = model.generate(x,
                                1,
                                temperature=temperature,
                                return_prime=False,
                                verbose=False)
        
          out1 = [o[0] for o in out.tolist() if o[0] > 255]
        
          if not out1:
            out1 = [-1]
        
          batch_value = random.choice(out1)
        
          if batch_value > 255:
            seq.append(batch_value)
        
          if batch_value > 383:
            nc += 1
    
        out = seq[len(input_seq):]
    
        outy.extend(out)

    print('=' * 70)
    print('Done!')
    print('=' * 70)
    
    #===============================================================================
    print('Rendering results...')
    
    print('=' * 70)
    print('Sample INTs', outy[:12])
    print('=' * 70)

    if len(outy) != 0:
    
        song = outy
        song_f = []
    
        time = 0
        dur = 32
        vel = 90
        dvels = [100, 120]
        pitch = 60
        channel = 0
        
        patches = [0, 10, 19, 24, 35, 40, 52, 56, 65, 9, 73, 0, 0, 0, 0, 0]
         
        for ss in song:
        
            if 0 <= ss < 128:
        
                time += ss * 32
        
            if 128 <= ss < 256:
        
                song_f.append(['note', time, 32, 9, ss-128, dvels[(ss-128) % 2], 128])
        
            if 256 < ss < 384:
        
                dur =  (ss-256) * 32
        
            if 384 < ss < 1664:
        
                chan = (ss-384) // 128
        
                if chan == 11:
                  channel = 9
                else:
                  if chan > 8:
                    channel = chan + 1
                  else:
                    channel = chan
        
                if channel == 9:
                  patch = 128
                else:
                  patch = channel * 8
        
                pitch = (ss-384) % 128

                vel = max(50, pitch)
        
                song_f.append(['note', time, dur, channel, pitch, vel, patch])


    fn1 = drums_score_fn
    
    detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f,
                                                              output_signature = 'Groove Music Transformer',
                                                              output_file_name = fn1,
                                                              track_name='Project Los Angeles',
                                                              list_of_MIDI_patches=patches
                                                              )
    
    new_fn = fn1+'.mid'
            
    
    audio = midi_to_colab_audio(new_fn, 
                        soundfont_path=soundfont,
                        sample_rate=16000,
                        volume_scale=10,
                        output_for_gradio=True
                        )
    
    print('Done!')
    print('=' * 70)

    #========================================================

    output_midi_title = str(fn1)
    output_midi_summary = str(song_f[:3])
    output_midi = str(new_fn)
    output_audio = (16000, audio)
    
    output_plot = TMIDIX.plot_ms_SONG(song_f, plot_title=output_midi, return_plt=True)

    print('Output MIDI file name:', output_midi)
    print('Output MIDI title:', output_midi_title)
    print('Output MIDI summary:', '')
    print('=' * 70) 
    

    #========================================================
    
    print('-' * 70)
    print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
    print('-' * 70)
    print('Req execution time:', (reqtime.time() - start_time), 'sec')

    return output_midi_title, output_midi_summary, output_midi, output_audio, output_plot

# =================================================================================================

if __name__ == "__main__":
    
    PDT = timezone('US/Pacific')
    
    print('=' * 70)
    print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
    print('=' * 70)

    soundfont = "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2"
   
    app = gr.Blocks()
    with app:
        gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Groove Music Transformer</h1>")
        gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Generate music for Google Magenta Groove MIDI dataset drums tracks</h1>")
        gr.Markdown(
            "![Visitors](https://api.visitorbadge.io/api/visitors?path=asigalov61.Groove-Music-Transformer&style=flat)\n\n"
            "Generate music for Google Magenta Groove MIDI dataset drums tracks\n\n"
            "Based upon [Google Magenta Groove MIDI Dataset](https://magenta.tensorflow.org/datasets/groove)\n\n"
        )
         
        run_btn = gr.Button("generate groove", variant="primary")

        gr.Markdown("## Generation results")

        output_midi_title = gr.Textbox(label="Output MIDI title")
        output_midi_summary = gr.Textbox(label="Output MIDI summary")
        output_audio = gr.Audio(label="Output MIDI audio", format="wav", elem_id="midi_audio")
        output_plot = gr.Plot(label="Output MIDI score plot")
        output_midi = gr.File(label="Output MIDI file", file_types=[".mid"])


        run_event = run_btn.click(GenerateGroove,
                                  outputs=[output_midi_title, output_midi_summary, output_midi, output_audio, output_plot])

        app.queue().launch()