File size: 5,718 Bytes
2f3b32c
39f7f02
 
 
2f3b32c
 
 
39f7f02
 
2f3b32c
39f7f02
 
 
2f3b32c
39f7f02
ab0e126
39f7f02
ab0e126
39f7f02
ab0e126
39f7f02
 
 
 
 
2f3b32c
ab0e126
2f3b32c
73c13c3
ab0e126
39f7f02
2f3b32c
39f7f02
 
2f3b32c
 
 
 
 
39f7f02
 
ab0e126
39f7f02
ab0e126
 
b986f28
 
ab0e126
39f7f02
ab0e126
39f7f02
 
 
 
 
 
 
ab0e126
39f7f02
ab0e126
39f7f02
 
ab0e126
39f7f02
 
 
 
 
ab0e126
 
 
 
 
39f7f02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab0e126
39f7f02
ab0e126
39f7f02
ab0e126
39f7f02
 
ab0e126
 
39f7f02
 
 
 
2f3b32c
 
 
39f7f02
 
2f3b32c
 
 
 
 
 
 
 
 
39f7f02
2021daa
39f7f02
 
 
 
 
 
 
 
 
ab0e126
288afe4
ab0e126
97e7837
ab0e126
 
 
 
 
 
288afe4
39f7f02
288afe4
2f3b32c
 
97e7837
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import gradio as gr
from transformers import pipeline
import requests
import json
import edge_tts
import asyncio
import tempfile
import os
import inflect
from huggingface_hub import InferenceClient
import re
import time
from streaming_stt_nemo import Model

number_to_word = inflect.engine()

default_lang = "en"

engines = { default_lang: Model(default_lang) }

def transcribe(audio):
    lang = "en"
    model = engines[lang]
    text = model.stt_file(audio)[0]
    return text

client1 = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")

system_instructions1 = "<s>[SYSTEM] Answer as Real Jarvis JARVIS, Made by 'Tony Stark', Keep conversation very short, clear, friendly and concise. The text provided is a request for a specific type of response from you, the virtual assistant. The request asks you to provide friendly responses as if You are the character Jarvis, made by 'Tony Stark.' The expectation is that I will avoid introductions and start answering the query directly, elaborating on all aspects of the request. As an AI-powered assistant, your task is to generate responses that appear as if they are created by the user and not an AI-powered assistant. [USER]"

def model(text):
    generate_kwargs = dict(
        temperature=0.7,
        max_new_tokens=512,
        top_p=0.95,
        repetition_penalty=1,
        do_sample=True,
        seed=42,
    )
    
    formatted_prompt = system_instructions1 + text + "[JARVIS]"
    stream = client1.text_generation(
        formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
    output = ""
    for response in stream:
        if not response.token.text == "</s>":
            output += response.token.text

    return output

def number_to_words(str):
    words = str.split(' ')
    result = []
    
    for word in words:
        if( any(char.isdigit() for char in word) ):
            word = number_to_word.number_to_words(word)

        result.append(word)

    final_result = ' '.join(result).replace('point', '')
    return final_result

async def respond(audio):
    user = transcribe(audio)
    reply = model(user)
    reply2 = number_to_words(reply)
    communicate = edge_tts.Communicate(reply2)
    with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
        tmp_path = tmp_file.name
        await communicate.save(tmp_path)
    yield tmp_path

DESCRIPTION = """ # <center><b>JARVIS⚡</b></center>
        ### <center>A personal Assistant of Tony Stark for YOU
        ### <center>Voice Chat with your personal Assistant</center>
        """

MORE = """ ## TRY Other Models
        ### Instant Video: Create Amazing Videos in 5 Second -> https://huggingface.co/spaces/KingNish/Instant-Video
        ### Instant Image: 4k images in 5 Second -> https://huggingface.co/spaces/KingNish/Instant-Image
        """

BETA = """ ### Voice Chat (BETA)"""

FAST = """## Fastest Model"""

Complex = """## Best in Complex Question"""

Detail = """## Best for Detailed Generation or Long Answers"""

base_loaded = "mistralai/Mixtral-8x7B-Instruct-v0.1"

client1 = InferenceClient(base_loaded)

system_instructions1 = "[SYSTEM] Answer as Real Jarvis JARVIS, Made by 'Tony Stark', Keep conversation very short, clear, friendly and concise. The text provided is a request for a specific type of response from you, the virtual assistant. The request asks you to provide friendly responses as if You are the character Jarvis, made by 'Tony Stark.' The expectation is that I will avoid introductions and start answering the query directly, elaborating on all aspects of the request. As an AI-powered assistant, your task is to generate responses that appear as if they are created by the user and not an AI-powered assistant. [USER]"

async def generate1(prompt):
    generate_kwargs = dict(
        temperature=0.7,
        max_new_tokens=512,
        top_p=0.95,
        repetition_penalty=1,
        do_sample=False,
    )
    formatted_prompt = system_instructions1 + prompt + "[JARVIS]"
    stream = client1.text_generation(
        formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True)
    output = ""
    for response in stream:
        if not response.token.text == "</s>":
            output += response.token.text

    communicate = edge_tts.Communicate(output)
    with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
        tmp_path = tmp_file.name
        await communicate.save(tmp_path)
    yield tmp_path

with gr.Blocks(css="style.css") as demo:    
    gr.Markdown(DESCRIPTION)
    with gr.Row():
        user_input = gr.Audio(label="Voice Chat (BETA)", type="filepath")
        output_audio = gr.Audio(label="JARVIS", type="filepath",
                        interactive=False,
                        autoplay=True,
                        elem_classes="audio")
    with gr.Row():
        translate_btn = gr.Button("Response")
        translate_btn.click(fn=respond, inputs=user_input,
                            outputs=output_audio, api_name=False)
    gr.Markdown(FAST)
    with gr.Row():
        user_input = gr.Textbox(label="Prompt", value="What is Wikipedia")
        input_text = gr.Textbox(label="Input Text", elem_id="important")
        output_audio = gr.Audio(label="JARVIS", type="filepath",
                        interactive=False,
                        autoplay=True,
                        elem_classes="audio")
    with gr.Row():
        translate_btn = gr.Button("Response")
        translate_btn.click(fn=generate1, inputs=user_input,
                            outputs=output_audio, api_name="translate")  

gr.Markdown(MORE)

if __name__ == "__main__":
    demo.queue(max_size=200).launch()