File size: 5,083 Bytes
a220803
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import os
import torch
import random
import torch.utils.data as data

import numpy as np

from PIL import Image

from opensora.utils.dataset_utils import is_image_file


class Sky(data.Dataset):
    def __init__(self, args, transform, temporal_sample=None, train=True):

        self.args = args
        self.data_path = args.data_path
        self.transform = transform
        self.temporal_sample = temporal_sample
        self.num_frames = self.args.num_frames
        self.sample_rate = self.args.sample_rate
        self.data_all = self.load_video_frames(self.data_path)
        self.use_image_num = args.use_image_num
        self.use_img_from_vid = args.use_img_from_vid
        if self.use_image_num != 0 and not self.use_img_from_vid:
            self.img_cap_list = self.get_img_cap_list()

    def __getitem__(self, index):

        vframes = self.data_all[index]
        total_frames = len(vframes)

        # Sampling video frames
        start_frame_ind, end_frame_ind = self.temporal_sample(total_frames)
        assert end_frame_ind - start_frame_ind >= self.num_frames
        frame_indice = np.linspace(start_frame_ind, end_frame_ind-1, num=self.num_frames, dtype=int) # start, stop, num=50

        select_video_frames = vframes[frame_indice[0]: frame_indice[-1]+1: self.sample_rate]

        video_frames = []
        for path in select_video_frames:
            video_frame = torch.as_tensor(np.array(Image.open(path), dtype=np.uint8, copy=True)).unsqueeze(0)
            video_frames.append(video_frame)
        video_clip = torch.cat(video_frames, dim=0).permute(0, 3, 1, 2)
        video_clip = self.transform(video_clip)
        video_clip = video_clip.transpose(0, 1)  # T C H W -> C T H W

        if self.use_image_num != 0 and self.use_img_from_vid:
            select_image_idx = np.linspace(0, self.num_frames - 1, self.use_image_num, dtype=int)
            assert self.num_frames >= self.use_image_num
            images = video_clip[:, select_image_idx]  # c, num_img, h, w
            video_clip = torch.cat([video_clip, images], dim=1)  # c, num_frame+num_img, h, w
        elif self.use_image_num != 0 and not self.use_img_from_vid:
            images, captions = self.img_cap_list[index]
            raise NotImplementedError
        else:
            pass

        return video_clip, 1

    def __len__(self):
        return self.video_num
    
    def load_video_frames(self, dataroot):
        data_all = []
        frame_list = os.walk(dataroot)
        for _, meta in enumerate(frame_list):
            root = meta[0]
            try:
                frames = [i for i in meta[2] if is_image_file(i)]
                frames = sorted(frames, key=lambda item: int(item.split('.')[0].split('_')[-1]))
            except:
                pass
                # print(meta[0]) # root
                # print(meta[2]) # files
            frames = [os.path.join(root, item) for item in frames if is_image_file(item)]
            if len(frames) > max(0, self.num_frames * self.sample_rate): # need all > (16 * frame-interval) videos
            # if len(frames) >= max(0, self.target_video_len): # need all > 16 frames videos
                data_all.append(frames)
        self.video_num = len(data_all)
        return data_all

    def get_img_cap_list(self):
        raise NotImplementedError

if __name__ == '__main__':

    import argparse
    import torchvision
    import video_transforms
    import torch.utils.data as data

    from torchvision import transforms
    from torchvision.utils import save_image


    parser = argparse.ArgumentParser()
    parser.add_argument("--num_frames", type=int, default=16)
    parser.add_argument("--frame_interval", type=int, default=4)
    parser.add_argument("--data-path", type=str, default="/path/to/datasets/sky_timelapse/sky_train/")
    config = parser.parse_args()


    target_video_len = config.num_frames

    temporal_sample = video_transforms.TemporalRandomCrop(target_video_len * config.frame_interval)
    trans = transforms.Compose([
        video_transforms.ToTensorVideo(),
        # video_transforms.CenterCropVideo(256),
        video_transforms.CenterCropResizeVideo(256),
        # video_transforms.RandomHorizontalFlipVideo(),
        transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)
    ])

    taichi_dataset = Sky(config, transform=trans, temporal_sample=temporal_sample)
    print(len(taichi_dataset))
    taichi_dataloader = data.DataLoader(dataset=taichi_dataset, batch_size=1, shuffle=False, num_workers=1)

    for i, video_data in enumerate(taichi_dataloader):
        print(video_data['video'].shape)
        
        # print(video_data.dtype)
        # for i in range(target_video_len):
        #     save_image(video_data[0][i], os.path.join('./test_data', '%04d.png' % i), normalize=True, value_range=(-1, 1))

        # video_ = ((video_data[0] * 0.5 + 0.5) * 255).add_(0.5).clamp_(0, 255).to(dtype=torch.uint8).cpu().permute(0, 2, 3, 1)
        # torchvision.io.write_video('./test_data' + 'test.mp4', video_, fps=8)
        # exit()