File size: 8,438 Bytes
a220803
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
# -*- coding: utf-8 -*-
import os
import re
import ftfy
import torch
import html
from PIL import Image
from transformers import CLIPProcessor, CLIPModel, CLIPTokenizer, CLIPTextModel

class CLIPEmbedder:
    """
    A class for embedding texts and images using a pretrained CLIP model.
    """
    
    def __init__(self, device='cuda', model_name='openai/clip-vit-base-patch32', cache_dir='./cache_dir', use_text_preprocessing=True, max_length=77):
        """
        Initializes the CLIPEmbedder with specified model and configurations.
        """
        self.device = torch.device(device)
        self.model_name = model_name
        self.cache_dir = cache_dir
        self.use_text_preprocessing = use_text_preprocessing
        self.max_length = max_length
        
        os.makedirs(self.cache_dir, exist_ok=True)
        
        self.processor = CLIPProcessor.from_pretrained(model_name, cache_dir=self.cache_dir)
        self.model = CLIPModel.from_pretrained(model_name, cache_dir=self.cache_dir).to(self.device).eval()
        self.tokenizer = CLIPTokenizer.from_pretrained(model_name)
        self.text_model = CLIPTextModel.from_pretrained(model_name, cache_dir=self.cache_dir).to(self.device).eval()
        
        for param in self.text_model.parameters():
            param.requires_grad = False

    def get_text_embeddings(self, texts):
        """
        Generates embeddings for a list of text prompts.
        """
        self._validate_input_list(texts, str)
        
        if self.use_text_preprocessing:
            texts = [self._clean_text(text) for text in texts]
        
        inputs = self.processor(text=texts, return_tensors="pt", padding=True, truncation=True, max_length=self.max_length).to(self.device)
        
        with torch.no_grad():
            embeddings = self.model.get_text_features(**inputs)
        
        return embeddings

    def encode_text(self, texts):
        """
        Encodes texts into embeddings and returns the last hidden state and pooled output.
        """
        self._validate_input_list(texts, str)
        
        batch_encoding = self.tokenizer(texts, return_tensors="pt", truncation=True, max_length=self.max_length, padding="max_length").to(self.device)
        
        with torch.no_grad():
            outputs = self.text_model(**batch_encoding)
        
        return outputs.last_hidden_state, outputs.pooler_output

    def get_image_embeddings(self, image_paths):
        """
        Generates embeddings for a list of image file paths.
        """
        self._validate_input_list(image_paths, str)
        images = [self._load_image(path) for path in image_paths]
        
        inputs = self.processor(images=images, return_tensors="pt").to(self.device)
        
        with torch.no_grad():
            embeddings = self.model.get_image_features(**inputs)
        
        return embeddings

    def _validate_input_list(self, input_list, expected_type):
        """
        Validates that the input is a list of expected type.
        """
        if not isinstance(input_list, list) or not all(isinstance(item, expected_type) for item in input_list):
            raise ValueError(f"Input must be a list of {expected_type.__name__}.")

    def _clean_text(self, text):
        """
        Applies basic cleaning and formatting to a text string.
        """
        text = ftfy.fix_text(text)
        text = html.unescape(text)
        return text.strip()

    def _load_image(self, image_path):
        """
        Loads and preprocesses an image from a file path.
        """
        try:
            image = Image.open(image_path).convert("RGB")
        except FileNotFoundError:
            raise FileNotFoundError(f"Image file not found: {image_path}")
        except Exception as e:
            raise Exception(f"Error loading image {image_path}: {e}")
        return image

    def clean_caption(self, caption):
        caption = str(caption)
        caption = ul.unquote_plus(caption)
        caption = caption.strip().lower()
        caption = re.sub('<person>', 'person', caption)
        # urls:
        caption = re.sub(
            r'\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))',  # noqa
            '', caption)  # regex for urls
        caption = re.sub(
            r'\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))',  # noqa
            '', caption)  # regex for urls

        caption = BeautifulSoup(caption, features='html.parser').text


        caption = re.sub(r'@[\w\d]+\b', '', caption)

        caption = re.sub(r'[\u31c0-\u31ef]+', '', caption)
        caption = re.sub(r'[\u31f0-\u31ff]+', '', caption)
        caption = re.sub(r'[\u3200-\u32ff]+', '', caption)
        caption = re.sub(r'[\u3300-\u33ff]+', '', caption)
        caption = re.sub(r'[\u3400-\u4dbf]+', '', caption)
        caption = re.sub(r'[\u4dc0-\u4dff]+', '', caption)
        caption = re.sub(r'[\u4e00-\u9fff]+', '', caption)

        caption = re.sub(
            r'[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+',  # noqa
            '-', caption)


        caption = re.sub(r'[`´«»“”¨]', '"', caption)
        caption = re.sub(r'[‘’]', "'", caption)


        caption = re.sub(r'&quot;?', '', caption)

        caption = re.sub(r'&amp', '', caption)


        caption = re.sub(r'\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}', ' ', caption)


        caption = re.sub(r'\d:\d\d\s+$', '', caption)


        caption = re.sub(r'\\n', ' ', caption)


        caption = re.sub(r'#\d{1,3}\b', '', caption)

        caption = re.sub(r'#\d{5,}\b', '', caption)
        caption = re.sub(r'\b\d{6,}\b', '', caption)
        caption = re.sub(r'[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)', '', caption)
        caption = re.sub(r'[\"\']{2,}', r'"', caption)  
        caption = re.sub(r'[\.]{2,}', r' ', caption)  

        caption = re.sub(self.bad_punct_regex, r' ', caption)  
        caption = re.sub(r'\s+\.\s+', r' ', caption)  
        regex2 = re.compile(r'(?:\-|\_)')
        if len(re.findall(regex2, caption)) > 3:
            caption = re.sub(regex2, ' ', caption)
        caption = self.basic_clean(caption)
        caption = re.sub(r'\b[a-zA-Z]{1,3}\d{3,15}\b', '', caption)  # jc6640
        caption = re.sub(r'\b[a-zA-Z]+\d+[a-zA-Z]+\b', '', caption)  # jc6640vc
        caption = re.sub(r'\b\d+[a-zA-Z]+\d+\b', '', caption)  # 6640vc231

        caption = re.sub(r'(worldwide\s+)?(free\s+)?shipping', '', caption)
        caption = re.sub(r'(free\s)?download(\sfree)?', '', caption)
        caption = re.sub(r'\bclick\b\s(?:for|on)\s\w+', '', caption)
        caption = re.sub(r'\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?', '', caption)
        caption = re.sub(r'\bpage\s+\d+\b', '', caption)

        caption = re.sub(r'\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b', r' ', caption)  # j2d1a2a...

        caption = re.sub(r'\b\d+\.?\d*[xх×]\d+\.?\d*\b', '', caption)

        caption = re.sub(r'\b\s+\:\s+', r': ', caption)
        caption = re.sub(r'(\D[,\./])\b', r'\1 ', caption)
        caption = re.sub(r'\s+', ' ', caption)

        caption.strip()

        caption = re.sub(r'^[\"\']([\w\W]+)[\"\']$', r'\1', caption)
        caption = re.sub(r'^[\'\_,\-\:;]', r'', caption)
        caption = re.sub(r'[\'\_,\-\:\-\+]$', r'', caption)
        caption = re.sub(r'^\.\S+$', '', caption)

        return caption.strip()

    @staticmethod
    def basic_clean(text):
        text = ftfy.fix_text(text)
        text = html.unescape(html.unescape(text))
        return text.strip()

if __name__ == '__main__':

    clip_embedder = CLIPEmbedder()

    # Example
    text_prompts = [
        'A photo of a cute puppy playing with a ball.',
        'An image of a beautiful sunset over the ocean.',
        'A scene depicting a busy city street.'
    ]
    text_embeddings = clip_embedder.get_text_embeddings(text_prompts)
    print(f"Text embeddings shape: {text_embeddings.shape}")

    image_paths = ['image1.jpg', 'image2.png']
    try:
        image_embeddings = clip_embedder.get_image_embeddings(image_paths)
        print(f"Image embeddings shape: {image_embeddings.shape}")
    except FileNotFoundError as e:
        print(e)
    except Exception as e:
        print(f"An error occurred: {e}")